Intel® Software Guard Extensions (Intel® SGX) SDK
for Windows* OS

Developer Reference

Intel® Software Guard Extensions Developer Reference for Windows* OS

Legal Information

No license (express or implied, by estoppel or otherwise) to any intellectual prop-
erty rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the
implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of
dealing, or usage in trade.

This document contains information on products, services and/or processes in
development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, spe-
cifications and roadmaps.

The products and services described may contain defects or errors known as errata
which may cause deviations from published specifications. Current characterized
errata are available on request.

Intel technologies features and benefits depend on system configuration and may
require enabled hardware, software or service activation. Learn more at Intel.com, or
from the OEM or retailer.

Copies of documents which have an order number and are referenced in this doc-
ument may be obtained by calling 1-800-548-4725 or by visiting www.in-
tel.com/design/literature.htm.

Intel, the Intel logo, VTune, Xeon, and Xeon Phi are trademarks of Intel Corporation
in the U.S. and/or other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optim-
izations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel micro-
processors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and
Reference Guides for more information regarding the specific instruction sets
covered by this notice.

Notice revision #20110804

* Other names and brands may be claimed as the property of others.

© Intel Corporation.

http://www.intel.com/design/literature.htm

Intel® Software Guard Extensions Developer Reference for Windows* OS

This software and the related documents are Intel copyrighted materials, and
your use of them is governed by the express license under which they were
provided to you (License). Unless the License provides otherwise, you may not
use, modify, copy, publish, distribute, disclose or transmit this software or the
related documents without Intel's prior written permission.

This software and the related documents are provided as is, with no express
or implied warranties, other than those that are expressly stated in the
License.

Revision History

Intel® Software Guard Extensions Developer Reference for Windows* OS

Revision Number Description Revision Date
1.1 Intel® SGX Win 1.1 release September 2015
1.6 Intel® SGX Win 1.6 release April 2016

1.7 Intel® SGX Win 1.7 release November 2016
1.8 Intel® SGX Win 1.8 release June 2017

1.9 Intel® SGX Win 1.9 release October 2017
1.9.5 Intel® SGX Win 1.9.5 release January 2018
1.9.6 Intel® SGX Win 1.9.6 release March 2018
2.0.0 Intel® SGX Win 2.0.0 release April 2018

2.0.1 Intel® SGX Win 2.0.1 release April 2018

2.1 Intel® SGX Win 2.1 release August 2018
2.2 Intel® SGX Win 2.2 release November 2018
2.2.3 Intel® SGX Win 2.2.3 release February 2019
2.3 Intel® SGX Win 2.3 release March 2019

2.4 Intel® SGX Win 2.4 release June 2019

2.5 Intel® SGX Win 2.5 release October 2019
2.5.1 Intel® SGX Win 2.5.1 release November 2019
2.6 Intel® SGX Win 2.6 release January 2020
2.7 Intel® SGX Win 2.7 release March 2020
2.7.1 Intel® SGX Win 2.7.1 release April 2020

2.8 Intel® SGX Win 2.8 release June 2020

2.9 Intel® SGX Win 2.9 release August 2020
2.10 Intel® SGX Win 2.10 release September 2020
2.11 Intel® SGX Win 2.11 release November 2020
2.12 Intel® SGX Win 2.12 release January 2021
2.13 Intel® SGX Win 2.13 release June 2021

2.14 Intel® SGX Win 2.14 release September 2021
2.14.1 Intel® SGX Win 2.14.1 release November 2021
2.15 Intel® SGX Win 2.15 release March 2022
2.16 Intel® SGX Win 2.16 release June 2022

2.17 Intel® SGX Win 2.17 release November 2022
2.18 Intel® SGX Win 2.18 release March 2023
2.19 Intel® SGX Win 2.19 release July 2023

2.20 Intel® SGX Win 2.20 release August 2023
2.21 Intel® SGX Win 2.21 release October 2023

Intel® Software Guard Extensions Developer Reference for Windows* OS

Intel® Software Guard Extensions Developer Reference for Windows* OS

Introduction

Intel provides the Intel® Software Guard Extensions (Intel® SGX) SDK
Developer Reference for software developers who wish to harden their applic-
ation security using the Intel Software Guard Extensions technology.

This document covers an overview of the technology, tutorials, tools, sample
code as well as an API reference.

Intel® Software Guard Extensions SDK is a collection of APls, sample source
code, libraries, and tools that enable the software developer to write and
debug Intel® Software Guard Extensions applications in C/C++ programming
language.

NOTE

Intel® Software Guard Extensions (Intel® SGX) technology is only available on
the 6th Generation Intel® Core(TM) Processor or newer.

Intel® Software Guard Extensions Technology Overview

Intel® Software Guard Extensions is an Intel technology whose objective is to
enable a high-level protection of secrets. It operates by allocating hardware-
protected memory where code and data reside. The protected memory area
is called an enclave. Data within the enclave memory can only be accessed by
the code that also resides within the enclave memory space. Enclave code can
be invoked via special instructions. An enclave can be built and loaded as a
Microsoft* Windows* DLL.

NOTE:

The enclave file can be disassembled, so the algorithms used by the enclave
developer will not remain secret.

Intel® Software Guard Extensions technology has a hard limit on the protected
memory size, typically 64 MB or 128 MB. As a result, the number of active
enclaves (in memory) is limited. Depending on the memory footprint of each
enclave, use cases suggest that 5-20 enclaves can reside in memory sim-
ultaneously.

Intel® Software Guard Extensions Security Properties

« Intel designs the Intel® Software Guard Extensions to protect against soft-

ware attacks:

Intel® Software Guard Extensions Developer Reference for Windows* OS

o The enclave memory cannot be read or written from outside the
enclave regardless of current privilege level and CPU mode
(ring3/user-mode, ring0/kernel-mode, SMM, VMM, or another
enclave). The abort page is returned in such conditions.

o An enclave can be created with a debug attribute that allows a
debugger to view its content. Production enclaves (non-debug) can-
not be debugged by software or hardware debuggers.

o The enclave environment cannot be entered via classic function
calls, jumps, register manipulation or stack manipulation. The only
way to call an enclave function is via a new instruction that per-
forms several protect checks. Classic function calls initiated by
enclave code to functions inside the enclave are allowed.

o CPU mode can only be 32 or 64 bit when executing enclave code.
Other CPU modes are not supported. An exception is raised in such
conditions.

o Intel designs the Intel® Software Guard Extensions to protect against
known hardware attacks:

o The enclave memory is encrypted using industry-standard encryp-
tion algorithms with replay protection.

o Tapping the memory or connecting the DRAM modules to another
system will only give access to encrypted data.

o The memory encryption key changes every power cycle randomly
(for example, boot/sleep/hibernate). The key is stored within the
CPU and it is not accessible.

o Intel® Software Guard Extensions is not designed to handle side
channel attacks or reverse engineering. It is up to the Intel® SGX
developers to build enclaves that are protected against these
types of attack.

Intel® Software Guard Extensions uses strong industry-standard algorithms for
signing enclaves. The signature of an enclave characterizes the content and
the layout of the enclave at build time. If the enclave’s content and layout are
not correct per the signature, then the enclave will fail to be initialized and,
hence, will not be executed. If an enclave is initialized, it should be identical to
the original enclave and will not be modified at runtime.

Intel® Software Guard Extensions Developer Reference for Windows* OS

Application Design Considerations

An Intel® Software Guard Extensions application design is different from non-
Intel® SGX application as it requires dividing the application into two logical
components:

« Trusted component. The code that accesses the secret resides here.
This component is also called an enclave. More than one enclave can
exist in an application.

o Untrusted component. The rest of the application including all its mod-
ules.’

The application writer should make the trusted part as small as possible. It is
suggested that enclave functionality should be limited to operate on the
secret data. A large enclave statistically has more bugs and (user created)
security holes than a small enclave.

The enclave code can leave the protected memory region and call functions in
the untrusted zone (by a special instruction). Reducing the enclave depend-
ency on untrusted code will also strengthen its protection against possible
attacks.

Embracing the above design considerations will improve protection as the
attack surface is minimized.

The application designer, as the first step to harnessing Intel® Software Guard
Extensions SDK in the application, must redesign or refactor the application to
fit these guidelines. This is accomplished by isolating the code module(s) that
access any secrets and then moving these modules to a separate pack-
age/library. The details of how to create such an enclave are detailed in the
tutorials section. You can also see the demonstrations on creating an enclave
in the sample code that are shipped with the Intel® Software Guard Extensions
SDK.

Terminology and Acronyms

AE Architectural enclaves. Enclaves that are part of the Intel® Soft-
ware Guard Extensions framework. They include the quoting

TFrom an enclave standpoint, the operating system and VMM are not trusted
components, either.

Intel® Software Guard Extensions Developer Reference for Windows* OS

enclave (QE), provisioning enclave (PvE), launch enclave (LE), pro-
visioning certification enclave (PCE) and the platform service
enclave (PSE).

Attestation

Prove authenticity. In case of platform attestation, prove the
identity of the platform.

CA Certificate Authority.

ECALL Enclave call. A function call that enters the enclave.

ECF Enclave Configuration File.

ECDH Elliptic curve Diffie—Hellman.

EDL Enclave Definition Language.

Intel® EPID |Intel® Enhanced Privacy ID.

FIPS Federal Information Processing Standards developed by
NIST for use in computer systems government-wide.

FIPS 140-2 |Standard that defines security requirements for cryptographic
modules and is required for sales to the Federal Governments.

HSM Hardware Security Module.

Attestation |Attestation Service for Intel® Software Guard Extensions.

Service

ISV Independent Software Vendor.

KE Key Exchange.

LE Launch enclave, an architectural enclave from Intel, involved in
the licensing service.

Nonce An arbitrary number used only once to sign a cryptographic com-
munication.

OCALL Outside call. A function call that calls an untrusted function from
an enclave.

PCE Provisioning certification enclave, an architectural enclave from
Intel, involved in the Intel® Enhanced Privacy ID (Intel® EPID) Pro-
vision service to provide provisioning certificate.

PSE Platform service enclaves, architectural enclaves from Intel.
Including PSE-pr (long-term paring) and PSE-Op (session man-
agement).

Intel® SGX |Platform Software for Intel® Software Guard Extensions.

PSW

PVE Provisioning enclave, an architectural enclave from Intel, involved
in the Intel® Enhanced Privacy ID (Intel® EPID) Provision service
to handle the provisioning protocol.

QE Quoting enclave, an architectural enclave from Intel, involved in

Intel® Software Guard Extensions Developer Reference for Windows* OS

the quoting service.

Intel® SGX |Intel® Software Guard Extensions.

SigRL Signature revocation list

SMK Session MAC key.

SP Service Provider.

SVN Security version number. Used to version security levels of both
hardware and software components of the Intel® Software Guard
Extensions framework.

TCB Trusted computing base. Portions of hardware and software that
are considered safe and uncompromised. A system protection is
improved if the TCB is as small as possible, making an attack
harder.

TCS Thread Control Structure.

TLS Thread Local Storage.

TLS Transport Layer Security.

tRTS Trusted Run Time System

uRTS Untrusted Run Time System

Intel® SGX |Intel® Software Guard Extensions SSL cryptographic library

SSL based on the OpenSSL. Provides cryptographic services for
Intel® Software Guard Extensions enclave applications.

-10 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Setting up an Intel® Software Guard Extensions Project
This topic introduces how to use the following features of Intel® Software
Guard Extensions SDK:

« Using Microsoft* Visual Studio* Intel® Software Guard Extensions Wizard
« Using Microsoft* Visual Studio* Intel® Software Guard Extensions Add-in
« Enclave Project Files

» Microsoft* Visual Studio* Project Settings

NOTE
The Visual Studio 2019 Add-in Tool is designed to work with the Visual Studio
2019 Professional Environment. While Visual Studio 2019 Professional is the
recommended environment, the tools may also be installed with the Com-
munity and Enterprise versions of Visual Studio 2019.

Using Microsoft* Visual Studio* Intel® Software Guard Extensions Wizard

Intel® Software Guard Extensions SDK installs a Microsoft* Visual Studio* soft-
ware wizard to aid developers in rapid development of Intel® Software Guard
Extensions. This wizard can be used to create an enclave project, which then
has the proper settings to take advantage of the various components that are
shipped with the Intel® SGX SDK.

Creating an Enclave

1. On the menu bar of Microsoft* Visual Studio*, choose File-->New-->Pro-
ject.

The New Project dialog box opens.

2. Select Intel® SGX Enclave Project, then click Next. Enter name, location,
and solution name in the appropriate fields like any other Microsoft*
Visual Studio* project.

-11 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Create a new project

Recent project templates

Alist of your recently accessed templates will be
displayed here,

Search for templates (Alt+5) P

Ce+ * Al platforms * Allproject types
E Visual Studlio Package

Create a VSPackage loadable in Visual Studio

C++ Windows Extensions

!“j‘ Intel® SGX Enclave Project
A project for creating an Intel® SGX enclave or enclave ibrary,

C++ Windows

- Empty Project
N

Start from scratch with C++ for Windows, Provides no starting files,

C++ Windows Console
ﬁ‘ Console App
Run code in a Windows terminal. Prints "Hello Werld" by default.
C++ Windows Console
tatt Windows Desktop Wizard
" Create your own Windows app using a wizard,
C+= Windows Desktop Console Library

Lha

e Windows Desktop Application

Figure 1 Intel® SGX Wizard: New Project Creation

3. Click Create and the welcome dialog appears.

Clear all

Next

-12 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Intel® SGX Enclave Project Wizard - Sample Enclave

D Welcome to the Intel® SGX Enclave Project Wizard
Overview These are the cument project settings:
Enclave Seftings * Enclave

+C+11

* EDL File

* CVE-2020-0551 Load
* CVE-2020-0551 Control Flow

Click Finish from any window to accept the cument settings.

< Previous Next > Finish

Figure 2 Intel® SGX Wizard: Welcome Dialog
4. Click Next to go to the Enclave Settings page.

-13 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Intel® SGX Enclave Project Wizard - Sample Enclave

EE' E \ Intel® SGX Enclave Settings

Overview Project Type: Additional Libraries:
Enclave Settings (® Enclave Ce+ 11
O Enclave library EDL File

Addttional Configurations:
[4] CVE-2020-0551 Load
[~ CVE-2020-0551 Control Flow

Signing Key:

< Previous Next > Finish

Figure 3 Intel® SGX Wizard: Enclave Settings
5. Configure the enclave with proper settings

o Project Type:

o Enclave - Create an enclave project.

o Enclave library — Create a static library for an enclave project.

« Additional Libraries:

o C++ 11 - Link C++ 11 with the enclave project.

o EDL File - Create an EDL file in enclave project.
« Signing Key:

o Import an existing signing key to the enclave project. A ran-

dom key will be generated if no file is selected. The Enclave

signer will sign the enclave with the key file (see File

Formats).

-14 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

. Addition Configurations:

o CVE-2020-0551 Load — Add CVE-2020-0551 mitigation
Load level configuration.
o CVE-2020-0551 Control Flow — Add CVE-2020-0551 mit-

igation Control Flow level configuration.

NOTE:

See Enable CVE-2020-0551 Mitigation for details on these new
configurations.

When the enclave project is created, the wizard ensures that the enclave
project has proper settings.

NOTE:
The Wizard requires Visual C++ tools installed, which is no longer done
by default in Visual Studio 2019. Please make sure the C++ tools are
installed before using the Wizard to create an enclave project.

NOTE:

The Wizard creates an enclave project with several files. See Enclave Pro-
ject Files for a detailed file list.

-15 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Solution Explorer *AX
@ o--@p &
Search Selution Explorer (Ctrl+;) P~

fa] Solution 'sample_enclave' (1 project)
4 A sample_enclave
b &2 External Dependencies
4 &g Generated Files
*+ sample_enclave_t.c
sample_enclave_th
B Header Files
4 &g Resource Files
D) sample_enclave.configaml
sample_enclave_private.pem
4 & Source Files
*+ sample_enclave.cpp
|| sample_enclave.edl
B ReadMebdt

Figure 4 Intel® SGX Wizard: Solution Explorer

Using Microsoft* Visual Studio* Intel® Software Guard Extensions Add-in

The Microsoft* Visual Studio* add-in is provided to the Intel® Software Guard
Extensions developer for configuring an enclave or importing an enclave to
untrusted components conveniently and efficiently. This add-in has three
main features:

-16 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

« Enclave Settings helps to maintain the enclave configuration settings

« Enclave Signing helps to perform enclave two-step signing for release
mode.

« Import Enclave helps to select the enclaves to be imported to the untrus-
ted components. Then the untrusted components can make use with the
enclave.

» Enclave Project Configuration helps to add CVE-2020-0551 mitigation
enabled configurations into exist trust projects.

Enclave Settings

Enclave settings helps you to create and maintain the enclave configuration
file. The enclave configuration file is part of the enclave project and describes
the information of the enclave metadata. See Enclave Configuration File for
details.

Enclave Settings gives you the option to update the following enclave set-
tings:

e ProdID

« ISVSVN

o StackMaxSize

o HeapMaxSize

e TCSNum

o TCSPolicy

« DisableDebug

o MiscSelect

o MiscMask

o EnableKSS

o ISVEXTPRODID H
o ISVEXTPRODID L
o ISVFAMILYID_H
o ISVFAMILYID L

To configure enclave settings:

Open the solution that contains the enclave project. Right click the enclave
project. Select Intel® SGX Configuration -> Enclave Settings. A dialog will
be shown which allows the modification of the enclave settings. Here is a
sample of the dialog.

-17 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Enclave Settings n

Basic Settings

Product 1D ISV SVN D
x100000 |

Thread Stack Size | 40000 Global Heap Size (100000

Thread Mumber 10 Thread Bound Policy | Unbound =

Advanced. ..

QK Cancel

Figure 5 Intel® SGX Configuration: Enclave Settings

The Basic Settings box provides users the interface to modify the basic
enclave settings. The following list gives an explanation of each configuration

element.

Name Description Tag in the Enclave Con-
figuration File

Product ID ISV assigned Product ID <ProdID>

ISV SVN ISV assigned SVN <ISVSVN>

Thread Stack |The stack size per trusted <StackMaxSize>

Size thread (in bytes)

Global Heap The heap size for the enclave (in <HeapMaxSize>

Size bytes)

Thread Num- [The number of trusted threads |[<TCSNum>

ber

Thread Bound [TCS management policy <TCSPolicy>

Policy

Table 1 Settings in the Enclave Configuration File

The Advanced Settings dialog shows the interface to modify the advanced
features. Given that users have enough knowledge of these advanced features,
click the button Advanced..., then the following window appears:

-18 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Advanced Settings n

Changing the following settings for cument enclave might affect the
enclave launch process.

Debug Selection
[] The enclave cannct be debugged

Misc Settings
Set the comesponding bits for the Misc Select and Misc Mask.

Misc Select ICI Misc Mask

[] Enable K55

QK Cancel

Figure 6 Intel® SGX Configuration: Advanced Enclave Settings

Check the Debug selection if you want to ensure the enclave cannot be
launched in debug mode. The setting corresponds to the element <Dis-
ableDebug> of the Enclave Configuration File. The code/data memory inside
an enclave launched in debug mode is accessible by the debugger or other
software outside of the enclave. Thus, it does not have the same memory
access protection as an enclave launched in non-debug mode. An enclave can
only be debugged if it is launched in debug mode. If the selection is checked,
the enclave built with this configuration cannot be debugged.

You can set the bits value for the Misc Select and Misc Mask in the Advanced
Settings dialog. These settings respectively correspond to the element <Mis-
cSelect>and <MiscMask> of the Enclave Configuration File. The <Mis-
cSelect>and <MiscMask> are for functionality extension in the future.

-19 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Currently only 0 for can be set for Misc Select by default. The recom-
mendation is keeping the default settings.

Check the Enable KSS option if you want to enable Key Separation & Sharing
(KSS) for the enclave. The setting corresponds to the element EnableKSs of
the Enclave Configuration File. You can also set the value for the ISV assigned
Extended Product ID and the ISV assigned Family ID from the text box. These
settings correspond to the elements ISVEXTPRODID H, ISVEXTPRODID I,
ISVFAMILYID H,and ISVFAMILYID L ofthe Enclave Configuration File
respectively . These elements are relevant to a more flexible model of KSS.
Note that you need to enable KSS before setting the ISV assigned Extended
Product ID and the ISV assigned Family ID.

Enclave Preferred Load Address

You may use the linker options /BASE and /FIXED to build an enclave.
/FIXED tells the uRTS and the driver to load the enclave at the preferred
load address only, which can be specified with the option /BASE.

When you use /BASE, the enclave PE's OptionalHeader.ImageBase is set
with the preferred load address. When you specify /FIXED, the linker does
not generate a relocation section for the enclave and the enclave PE's Head-
er.Characteristics willhave IMAGE FILE RELOCS STRIPPED set.
Additionally the PE's OptionalHeader.DLLCharacteristics will not
have IMAGE DLL CHARACTERISTICS DYNAMIC BASE set,to indicate the
enclave DLL cannot be relocated at load time.

When you sign the enclave, if sgx sign.exe detects that an enclave has
IMAGE FILE RELOCS_STRIPPED setinthe enclave PE's Head-
er.Characteristics,it will verify that the enclave does not have a relo-
cation section and that IMAGE DLL CHARACTERISTICS DYNAMIC BASE s
not set inthe PE OptinalHeader.DLLCharacteristics.Inaddition,
sgx_sign.exe ensures that the selected BASE naturally aligns with the
enclave size. If any of these three requirements fails, sgx sign.exe reports
an error. The loader sgx_urts.dll only attempts to load an enclave after
the enclave passes the same three tests. You may still receive an error from
sgx_urts.dll if the enclave cannot be loaded at the preferred load
address.

Enclave Signing

With the enclave launch control, the enclave signing key for release mode
must be stored in secure manner, such as a platform managed by an HSM. All

-20 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

the release mode enclaves should use two-step signing mechanism. Enclave
Signer Usage Examples describes a command line example for this two-step
signing process. Enclave Signing provides a GUI to help developers to per-

form the two-step signing process more easily and more conveniently.

Step 1: Generate Enclave Signing Material

Open the solution that contains the enclave project. Right click the enclave

project. Select Intel® SGX Configuration -> Enclave Signing. The Enclave
Signing dialog appears. The following graphic shows a GUI sample for gen-

erating the enclave signing material.

Enclave Signing n

You can choose the following Z-step signing process to sign the enclave with
your own signing facility.

(@ Step 1-Generate Enclave Signing Material

Specify the name and the location for the signing materal. The unsigned
enclave file will be copied to the same location as the output file.

Mame: | Enclave hex |

Location: |C:\Program Files (<86)\Intel\Intel SGXSDK\src\Sar | | Browse..

Generate Signing Materal

() Step 2 - Generate Signed Enclave File

Signing Materal Fle: |C:\Program Files (86 nte\ntel SGXSL| | Select...

nclave File C:\Program Files {86\ ntel\Intel SGXSL| | Select...
Public Key File Select...

Signature File Select...

Generate a Signed Enclave

OK

Figure 7 Intel® SGX Configuration: Generate Enclave Signing Material

-21-

Intel® Software Guard Extensions Developer Reference for Windows* OS

The default name and location for the output enclave signing material are spe-
cified. You can change the name and location. Click the button Generate Sign-
ing Material to generate the enclave signing material.

After finishing Step 1, you need to use your own signing facility, which can
access your private signing key to sign the output enclave signing material,
then bring the resulting signature file back for Step 2.

NOTE

By default, a Post Build Event for generating enclave signing material is
added during enclave creation with Microsoft* Visual Studio* in Intel® Soft-
ware Guard Extensions Wizard. Thus, for the release mode, the enclave signing
material is generated automatically after you compile the enclave project.

Step 2: Generate a Signed Enclave File

If you have finished generating the enclave signing material and have pre-
pared the resulting signature file, you can generate the signed enclave file. To
generate the final signed enclave file, select the radio button next to Step 2 -
Generate Signed Enclave File.

-22 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Enclave Signing n

You can choose the following Z-step signing process to sign the enclave with
your own signing facility.

() Step 1-Generate Enclave Signing Materal

ame Enclave hex
Location: |C:A\Program Files (B8N ntelsIntel SGXSDK st Sar| | Browse..

Generate Signing Materal

(® Step 2 - Generate Signed Enclave File

Specify the file locations and then generate the signed enclave file.

Signing Material File: |C:\F‘mg|am Files {:uEE}\IrrteI\InteISGXSﬂ Select...

Enclave File: |C:\Program Files (86) el \IntelSGXSL| | Select ..
Public Key File: | | Select ...
Signature File: | | Select...

(Generate a Signed Enclave

oK

Figure 8 Intel® SGX Configuration: Generate a Signed Enclave File

The default location for the signing material and the enclave file are specified.
Check whether the specified paths are correct for the signing material and the
enclave file. Click the button Select... next to Public Key File to specify the
corresponding public key. Click the button Select... next to Signature File to
specify the resulting signature file.

After specifying all the correct files, click the button Generate Signed
Enclave, then the final signed enclave file is generated under the same folder
of the specified enclave file.

Import Enclave

Import Enclave helps to select the enclaves to be imported to the untrusted
components. Then the untrusted components can make use of the enclaves.

-23-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Import Enclave provides the following functions:

« Allows selecting an enclave from the list of enclaves created with the
Intel® SGX Wizard in the same solution.

« Supports browsing/searching for 3rd party provided enclaves which are
defined by EDL files.

« Provides the option to remove any enclave selected to be hosted by an
application.

o Adds/removes the enclave's u.h and _u.c files to/from the untrusted
component project, for each enclave that is added to/removed from the
application.

« Sets up the project settings for the untrusted component.

To import enclaves:

Open the solution that contains both the enclave project and the untrusted
application project that will host the enclave. Right click the untrusted applic-
ation project. Select Intel® SGX Configuration -> Import Enclave. The fol-
lowing sample dialog will be shown. In this example, the enclave project name
is sample_enclave and the hosting project is a Win32 console application.

-24 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Include EDLs

This field displays the EDL files that are included in the solution or
that have been imported. Select the EDL files required for cument
project.

=8 sample_enclave

Search Path Settings

Speciy any addtional search paths for EDL files. Separate muttiple
paths with semicolons.

Figure 9 Intel® SGX Configuration: Import Enclave

The Include EDLs section in the Import Enclave dialogue contains all the
enclaves in this solution and any enclaves imported from outside the solution.
Each enclave is represented by an Enclave Definition Language (EDL) file. EDL
is a minimal IDL used to describe the enclave interface. See Enclave Definition
Language Syntax for a detailed description. Select the EDL files corresponding
to the enclaves to be imported into the application.

To import an enclave that is not in the solution, you can click Import EDL... to
select a new EDL file. The imported enclaves are listed in the Imported field.

-25-

Intel® Software Guard Extensions Developer Reference for Windows* OS

You need to select any of the imported EDL files representing the enclaves
you wish to import into the application.

Include EDLs

This field displays the EDL files that are included in the salution or
that have been imported. Select the EDL files required for cument

Search Path Settings

Specify any additional search paths for EDL files. Separate muttiple
paths with semicolons.

| .

0K Cared | ey

Figure 10 Intel® SGX Configuration: Import EDL File

If the selected EDL files require additional search paths for any embedded
EDL files, specify the search paths in the Search Path Settings.

To put the actions into effect, click OK. Then two files will be added to the

untrusted application project: sample enclave u.cand sample
enclave u.h. They contain the declarations and definitions of the untrusted
wrapper functions used to call enclave functions. In addition, the properties of

-26 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

the untrusted application project are modified to recreate the files when the
project is rebuilt. The files are not expected to be modified by the user. To
cancel the actions, click Cancel.

To remove an imported enclave from the untrusted application, unselect the
corresponding EDL file and click OK. Then the corresponding settings in the
untrusted application are removed.

Enclave Project Configuration

Enclave Project Configuration helps you add new configurations into exist
trust projects.

To add new configurations:

Open the solution that contains the trust project. Right click the trust project.
Select Intel® SGX Configuration -> Enclave Project Configuration. A dialog
will be shown.

o' Set Project Configurations - | X

CVE-2020-0551
(] CVE-2020-0551 Load

4] CVE-2020-0551 Control Flow

OK Cancel

The CVE-2020-0551 dialog box provides users the interface to select the
two levels of CVE-2020-0551 mitigation enabled configurations.

NOTE:

If target trusted project has included corresponding CVE-2020-0551* con-
figurations already, the tool will do nothing.

NOTE:
See Enable CVE-2020-0551 Mitigation for details.

Enclave Project Files

The Intel® Software Guard Extensions wizard is used to create enclave pro-
jects. It creates several files with names derived from the project name.

-27 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Assuming the enclave project name is sample_enclave, here is the list of files
generated by the wizard.

Source files:

e sample enclave.cpp —main source file, to be filled with user func-
tions and variables. The user can add additional source files.

e sample enclave t.c —trusted auto-generated wrapper functions.
Do not modify this file as every build recreates it.

e sample enclave.edl-enclave definition language (EDL) file.
Declares which functions are exported (trusted) and imported (untrus-
ted) by the enclave. EDL syntax is explained in a separate chapter.

Header files:

e sample enclave t.h-trusted auto-generated header for wrapper
functions. Do not modify this file as every build recreates it.

Resource files:

« sample enclave.config.xml —specifies the enclave configuration.

Details are explained in a separate section.
e sample enclave.private.pem—RSA private key used to sign the

enclave.

NOTE:
The private key must be kept secret and safe. If it is exposed, the key could be
used by malware writers to create a valid signed enclave.If you do not want to
expose the private key in the enclave project, you can use sgx_sign to sign the
enclave in a separate environment. See Enclave Signing Tool for a detailed
description.

Microsoft* Visual Studio* Project Settings
This section introduces the following project settings:

« Recommended Project Settings for an Enclave Project
o Recommended Project Settings for an Untrusted Application

To configure the project settings in Microsoft* Visual Studio*, right click the
project name in Solution Explorer and select Properties from the context
menu.

-28-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Recommended Project Settings for an Enclave Project

For an enclave, default project settings are recommended, with the following
exceptions:

C/C++->General->Additional Include Directories:

[Intel SGX SDK Install Path]include;[Intel SGX SDK Install Path]include\tlibc;
[Intel SGX SDK Install Path]include\stlport;

C/C++->Command Line->Additional Options:

/d2FH4-

NOTE:

The existing projects should also add /d2FH4- flag to their project settings if
they upgrade from V52017 to VS2019.

Linker->General->Additional Library Directories:

[Intel SGX SDK Install Pathlbin\$(Platform)\$(Configuration)

Linker->Input->Additional Dependencies:

HW Configuration: sgx_trts.lib; sgx tservice.lib; sgx_
tstdc.lib; sgx tlibcxx.lib; sgx tcrypto.lib

Simulation Configuration: sgx_trts sim.lib; sgx tservice
sim.lib; sgx tstdc.lib; sgx tlibcxx.lib; sgx tcrypto.lib

Linker->Input->iIgnore All Default Libraries:Yes (/NODEFAULTLIB)
Linker->Advanced->No Entry Point:yes

To sign the enclave during the build process, set a custom build step in the
project settings:

Build Events->Post-Build Event->Command Line (Win32):

"[Intel SGX SDK Install Path]bin\win32\release\sgx
sign.exe" sign -key "$(ProjectDir)sample enclave
private.pem" -enclave "$(OutDir)sample enclave.dll" -out
"S (OutDir)sample enclave.signed.dll" -config "S$ (Pro-
jectDir)sample enclave.config.xml"

-29-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Build Events->Post-Build Event->Command Line (x64):

"[Intel SGX SDK Install Pathlbin\x64\release\sgx
sign.exe" sign -key "$(ProjectDir)sample enclave
private.pem" -enclave "$(OutDir)sample enclave.dll" -out
"S (OutDir)sample enclave.signed.dll" -config "S$ (Pro-
jectDir)sample enclave.config.xml"

Build Events->Post-Build Event->Use In Build:Yes

NOTE:

The signing command line is a sample command. Change the command line
based on the actual enclave name.

NOTE:

A few compiler options are not supported when enclave code is compiled.
See sections Unsupported MSVC* Options for Enclaves for a detailed list.

Recommended Project Settings for an Untrusted Application
Use the default project settings for an untrusted application, with the fol-
lowing additional settings:

C/C++->General->Additional Include Directories: $ (SGXSDKIn-
stallPath) include;

Linker->General->Additional Library Directories: $ (SGXSDKIn-
stallPath)bin\$ (Platform)\$ (Configuration)

Linker->Input->Additional Dependencies:
HW Configuration: sgx uae service.lib; sgx urts.lib

Simulation Configuration: sgx_uae service sim.lib; sgx _urts
sim.lib

Supported Application Types

The Intel® Software Guard Extensions SDK supports a number of application
types and user accounts on the Windows* OS. Users of regular, guest and
administrator accounts may run an enclave application in the form of a DLL to
load and interface with an Intel® SGX enclave. User-level driver and system ser-
vices that execute in the security context of a user account also have access to
the functionality provided by the Intel® SGX software stack.

-30 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Using Intel® Software Guard Extensions SDK Tools
This topic introduces how to use the following tools that the Intel® Software
Guard Extensions SDK provides:

Edger8r Tool
Generates interfaces between the untrusted components and enclaves.
Enclave Signing Tool

Generates the enclave metadata, which includes the enclave signature,
and adds such metadata to the enclave image.

Enclave Debugger
Helps to debug an enclave.
Enclave Memory Measurement Tool

Helps to measure the usage of protected memory by the enclave at
runtime.

CPUSVN Configuration Tool

Helps to simulate the CPUSVN upgrade/downgrade scenario without
modifying the hardware.

Edger8r Tool

The Edger8r tool ships as part of the Intel® Software Guard Extensions SDK. It
generates edge routines by reading a user-provided Enclave Description Lan-
guage (EDL) file. These edge routines define the interface between the untrus-
ted application and the enclave. Normally, the tool runs automatically as part
of the enclave build process. However, an advanced enclave writer may invoke
the Edger8r manually.

When given an EDL file, for example, demo . ed1, the Edger8r by default gen-
erates four files:

demo_t.h - Contains prototype declarations for trusted proxies and
bridges.

demo_t.c — Contains function definitions for trusted proxies and
bridges.

demo u.h - Contains prototype declarations for untrusted proxies and
bridges.

-31 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

e demo_u.c - Contains function definitions for untrusted proxies and
bridges.

Here is the command line description for the Edger8r tool:

Syntax:
sgx_edger8r [options] <.edl file> [another .edl file ..]

Arguments:

[Options] Descriptions

--use-prefix Prefix the untrusted proxy with the enclave name.

--header-only Generate header files only.

--search-path Specify the search path of EDL files.

<path>

--untrusted Generate untrusted proxy and bridge routines only.

-—trusted Generate trusted proxy and bridge routines only.

--untrusted-dir |Specify the directory for saving the untrusted code.

<dir>

--trusted-dir Specify the directory for saving the trusted code.

<dir>

--preprocessor |Specify the path to the compiler, which is used to pre-
process the EDL file.

--help Print help message showing the command line and
options.

If neither -—untrusted nor -—trusted is specified, the Edger8r generates
both.

Here, the path parameter has the same format as the PATH environment vari-
able, and the enclave name is the base file name of the EDL file (demo in this
case).

CAUTION:
The ISV must run the Edger8r tool in a protected malware-free environment
to ensure the integrity of the tool so that the generated code is not com-
promised. The ISV is ultimately responsible for the code contained in the
enclave and should review the code that the Edger8r tool generates.

-32-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Enclave Signing Tool

The Intel® Software Guard Extensions (Intel® SGX) SDK provides a tool named
sgx_sign for you to sign enclaves. In general, signing an enclave is a process
that involves producing a signature structure that contains enclave properties
such as the enclave measurement (see Enclave Signature Structure below).
Once an enclave is signed in such structure, the modifications to the enclave
file (such as code, data, signature, and so on) can be detected. The signing tool
also evaluates the enclave image for potential errors and warns you about
potential security hazards. sgx_sign is typically set up by one of the con-
figuration tools included in the Intel® SGX SDK and runs automatically at the
end of the build process. During the loading process, the signature is checked
to confirm that the enclave has not been tampered with and has been loaded
correctly. In addition, the signing tool can also be used to report metadata
information for a signed enclave and to generate the SIGStruct file needed to
add the enclave signer to the allowlist.

Table 2 Enclave Signature Structure

Section Name

HEADERTYPE
HEADERLEN
HEADERVERSION
TYPE
MODVENDOR
DATE
SIZE
KEYSIZE
MODULUSSIZE
ENPONENTSIZE
SWDEFINED
RESERVED
MODULUS
Signature EXPONENT
SIGNATURE

Header

-33-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Body

Buffer

Section

Name

MISCSELECT
MISCMASK
RESERVED
ISVFAMILYID
ATTRIBUTES
ATTRIBUTEMASK
ENCLAVEHASH
RESERVED
ISVEXTPRODID
ISVPRODID
ISVSVN
RESERVED

Q1

Q2

Command-Line Syntax

Torun sgx sign,use the following command syntax:

sgx_sign

<command> [args]

All valid commands are listed in the table below. See Enclave Signer Usage
Examples for more information.

Table 3 Signing Tool Commands

sections of the enclave signature structure (see

Command Description Arguments
sign Sign the enclave using the private key in one step. |Required:
-enclave, -key,
-out
Optional:
-config,
-dumpfile,
-cssfile
gendata [The first step of the 2-step signing process. Gen- |Required:
erate the enclave signing material to be signed by |-enclave, -out
an external tool. This step dumps the signing Optional:
material, which consists of the header and body _config '

-34 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

the Table Enclave Signature Structure in this
topic), into a file (256 bytes in total).

catsig [The second step of the 2-step signing process. Required:
Generate the signed enclave with the input sig- |-enclave, -key,
nature and public key. The input signature is gen- |-out, -sig,
erated by an external tool based on the data -unsigned
generated by the gendata command. At this Obti .

) , ptional:
step, the signature and buffer sections are gen- _config
erated. The signature and buffer sections together ’
with the header and body sections complete the |-dumpfile,
enclave signature structure (see the Table Enclave _cssfile
Signature Structure in this topic).

dump Get the metadata information for a signed enclave [Required:
file and dump the metadata to a file specified with _enclave,
the —dumpfile option and the SIGSTRUCT to the _
, - , . -dumpfile
file specified by the -cssfile option.
Optional:
-cssfile

All the valid command options are listed below:

Table 4 Signing Tool Arguments

Arguments

Descriptions

-enclave <file>

Specify the enclave file to be signed or already signed.

It is a required argument for the four commands.

-config <file>

Specify the enclave configuration file

It is an invalid argument for the dump command and an
optional argument for the other three commands.

-out <file>

Specify the output file.

It is required for the following three commands.

Command Description

sign The signed enclave file.

gendata The file with the enclave
signing material.

catsig The signed enclave file.

-key <file>

detailed description.

Specify the signing key file. See File Formats for

-35 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Command Description

sign Private key.

gendata Not applicable.

catsig Public key.

-sig <file>

Specify the file containing the signature corresponding
to the enclave signing material.

Only valid for catsig command.

-unsigned
<file>

Specify the file containing the enclave signing material
generated by gendata.

Only valid for the catsig command.

-dumpfile

Specify a file to dump metadata information.

It is a required argument for the dump command and
an optional argument for sign and catsig

-cssfile

Specify a file to dump the SIGSTRUCT information.

It is an optional argument for the sign, catsigand
dump commands.

-resign

By default, sgx_sign reports an error if an input enclave
has already been signed. You can force sgx_sign to
resign the enclave by providing this option

-version

Print the version information and exit.

-help

Print the help information and exit.

The arguments, including options and filenames, can be specified in any order.
Options are processed first, then filenames. Use one or more spaces or tabs to
separate arguments. Each option consists of an option identifier, a dash (-), fol-
lowed by the name of the option. The <file> parameter specifies the abso-
lute or relative path of a file.

Users can start sgx_sign from a system command prompt or integrate the
command line into a Post Build Event under the enclave project properties in
Microsoft* Visual Studio* IDE. To follow the different command character set
rules in different platforms, sgx sign Command-Line is case-insensitive in

Windows* OS.

sgx_sign generates the output file and returns O for success. Otherwise, it
generates an error message and returns -1.

-36 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Enclave Signing Key Management

An enclave project supports different signing methods needed by ISVs during
the enclave development life cycle.

o Single-step method using the ISV's test private key:

The signing tool supports a single-step signing process, which requires
the access to the signing key pair on the local build system. However,
there is a requirement that any enclave signing key added to the allowl-
ist must be managed in a hardware security module. Thus, the ISV's test
private key stored in the build platform will not be added to the allowlist
and enclaves signed with this key can only be launched in debug or
prerelease mode. In this scenario, the ISV manages the signing key pair,
which could be generated by the Microsoft* Visual Studio Wizard when
the enclave project is created or by the ISV using his own means. Single-
step method is the default signing method for non-production enclave
applications, which are created with the Intel SGX project debug and
prerelease profiles.

« 2-step method using an external signing tool:

1. First step: At the end of the enclave build process, the signing tool
generates the enclave signing material. The ISV may also generate
the enclave signing material file by an option available in the
Microsoft* Visual Studio Add-in.

The ISV takes the enclave signing material file to an external sign-
ing platform/facility where the private key is stored, signs the sign-
ing material file, and takes the resulting signature file back to the
build platform.

2. Second step: The ISV selects the Second Step Signing option from
the Microsoft* Visual Studio Add-in to add the hash of the public
key and signature to the enclave’'s metadata section.

The 2-step signing process protects the signing key in a separate facility.
Thus it is the default signing method for the Intel SGX project release
profile. This means it is the only method for signing production enclave
applications.

File Formats

There are several files with various formats followed by the different options.
The file format details are listed below.

Table 5 Signing Tool File Formats

-37-

Intel® Software Guard Extensions Developer Reference for Windows* OS

File Format|Description

Enclave file |DLL A standard DLL.

Signed DLL sgx sign generates the signed enclave file , which

enclave file includes the signature, to the enclave file.

Configuration XML [See Enclave Configuration File.

file

Key file PEM |Key file should follow the PEM format which contains an
unencrypted RSA 3072-bit key. The public exponent
must be 3.

Enclave hex |RAW |A dump file of the enclave signing material data to be

file signed with the private RSA key.

Signature fileRAW |A dump file of the signature generated at the ISV's sign-
ing facility. The signature should follow the RSA-
PKCS1.5 padding scheme. The signature should be gen-
erated using the v1.5 version of the RSA scheme with
an SHA-256 message digest.

Metadata file |RAW |A dump file containing the SIGStruct metadata for the
signed enclave. This file is submitted when there is a
request for Intel to add a production enclave to the
allowlist.

Signing Key Files

The enclave signing tool only accepts key files in the PEM format and that are
unencrypted. When an enclave project is created for the first time, you have to
choose either using an already existing signing key or automatically generating
one key for you. When you choose to import a pre-existing key, ensure that
such key is in PEM format and unencrypted. If that is not the case, convert the
signing key to the format accepted by the Signing Tool first. For instance, the
following command converts an encrypted private key in PKCS#8/DER format
to unencrypted PEM format:

openssl pkcs8 —-inform DER —-in private pkcs8.der -outform
PEM -out private pkcsl.pem

Depending on the platform OS, the openssl* utility might be installed already
or it may be shipped with the Intel® SGX SDK.

-38-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Enclave Signer Usage Examples

The following are typical examples for signing an enclave using the one-step
or the two-step method. When the private signing key is available at the build
platform, you may follow the one-step signing process to sign your enclave.
However, when the private key is only accessible in an isolated signing facility,
you must follow the two-step signing process described below.

o One-step signing process:
Signing an enclave using a private key available on the build system:
sgx_sign sign -enclave enclave.dll -config con-

fig.xml -out enclave signed.dll -key private.pem

o Two-step signing process:
Signing an enclave using a private key stored in an HSM, for instance:

1. Generate the enclave signing material.
sgx _sign gendata -enclave enclave.dll -config
config.xml -out enclave sig.dat

2. At the signing facility, sign the file containing the enclave signing
material (enclave sig.dat)and take the resulting signature file

(signature.dat) backto the build platform

3. Sign the enclave using the signature file and public key.
sgx_sign catsig -enclave enclave.dll -config con-
fig.xml -out enclave signed.dll -key public.pem
-sig signature.dat -unsigned enclave sig.dat

The configuration file config.xml is optional. If you do not provide a con-
figuration file, the signing tool uses the default configuration values.

The following example illustrates generating a report of metadata information
for a signed enclave:

sgx_sign dump -enclave enclave signed.dll -dumpfile
metadata info.txt

Intel® SGX SDK provides a tool for operating with both 32-bit and 64-bit
enclaves.

-390 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

OpenSSL* Examples
The following command lines are typical examples using OpenSSL*.

1. Generate a 3072-bit RSA private key. Use 3 as the public exponent
value.

openssl genrsa -out private key.pem -3 3072

2. Produce the public part of a private RSA key.

openssl rsa -in private key.pem -pubout -out public
key.pem

3. Sign the file containing the enclave signing material.

openssl dgst -sha256 -out signature.dat -sign private
key.pem -keyform PEM enclave sig.dat

Enclave Debugger
Only a debug mode enclave can be debugged.
The enclave must be built as debuggable. See Enclave Settings to unselect

Ensure the enclave cannot be launched in debug mode in the enclave
Advanced Configuration.

Starting and Debugging an Enclaved Application from within Microsoft* Visual Stu-
dio
The native Microsoft* Visual Studio* 2019 debugger can debug an enclave, so

you can perform normal application debugging such as setting breakpoints or
stepping into an enclave.

In earlier versions of Microsoft* Visual Studio*, a debug mode enclave can be
debugged with the Intel® SGX debugger.

Attaching to and Debugging an Enclave inside a Running Process

Use the following step to attach to and debug an enclave inside a running pro-
cess:

In Microsoft* Visual Studio*, select the process that you would like to attach to
and debug, then click theAttach button.

- 40 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

When performing a remote debugging, the host machine needs the Intel® SGX
SDK installed; the target machine needs the Microsoft* Visual Studio* remote
debugger server:

1. On the target machine, launch the Remote Debugging Monitor (msvs-
mon . exe) that was installed as a part of Microsoft* Visual Studio*.

2. On the host machine, set the qualifier as the target machine name or IP
address.

NOTE:

The remote machine may have multiple versions of the Remote Debugging
Monitor. Ensure that the version of the Remote Debugging Monitor being run
corresponds to the version of Microsoft* Visual Studio* that was configured
during the installation of the Intel® SGX SDK.

See Remote Debugging Setup at https://docs.microsoft.com/en-us/visu-
alstudio/debugger/remote-debugging

The debugger can be used to debug both an enclave project and an untrus-
ted application, but cannot be used to debug the uRTS and tRTS, which are
parts of the Intel® Software Guard Extensions SDK. When a breakpoint occurs
inside the uRTS or tRTS, the debugger is not able to display any symbols and
the button step out does not work. To fix this issue, manually add one more
break point outside the uRTS and tRTS.

Attaching to and Debugging an Enclave inside a Running Universal Windows
Application
The enclave inside a Universal Windows Platform (UWP) Application can only

be debugged by the attach mode. Please see Attaching to and Debugging an
Enclave inside a Running Process for more details.

Enclave Memory Measurement Tool

An enclave is an isolated environment. The Intel® Software Guard Extensions
SDK provides a tool called sgx emmt to measure the real usage of protected
memory by the enclave at runtime.

Currently the enclave memory measurement tool provides the following func-
tions:

1. Get the stack peak usage value for the enclave.
2. Get the heap peak usage value for the enclave.
3. Get the reserved memory peak usage value for the enclave.

-41 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The tool reports the size of the memory usage in KB. Once you get accurate
memory usage information for your enclaves, you can rework the enclave con-
figuration file based on this information to make full use of the protected
memory. See Enclave Configuration File for details.

The tool is a separate application under Windows* OS. To measure the pro-
tected memory consumption by one enclave, leverage this tool to launch a
test application which in turns loads the enclave. Use the following syntax for
Sgx emmt:

sgx_emmt [--enclave=<enclave list>] application name
<application args>

Arguments:
--enclave:

This is an optional argument. It follows the measurement targets which are spe-
cified by <enclave 1list>.If users do not provide this parameter, the tool
will collect the protected memory usage information for each measurable
enclave. If more than one enclave needs to be measured, all the enclave

names should be listed in <enclave 1ist> separated by comma (,) without
any blank space.

application:

It is the required argument which indicates the test application name. The
application arguments are provided in <application args> if there are
any.

Examples:

Assume a test application name is my2App with two input parameters. The test
application manages three enclaves named myEnclavel,myEnclave?2,
myEnclave3.

1. Measure all the enclaves:
sgx_emmt myApp.exe app argl app arg?2
2. Measure two enclave targets:

sgx_emmt —--enclave-
e=myEnclavel.signed.dll,myEnclave?2.signed.dl]l myApp.exe

app_argl app arg?2

NOTE:

42 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The enclave memory measurement tool works based on the assumption that
the measurement targets are measurable enclaves and the symbol files of the
measurement targets can be found by default. A measurable enclave should
meet the following requirements:

1. The enclave should be a debuggable enclave. This means that the <Dis-
ableDebug> configuration parameter in the enclave configuration file
should be set to 0.

2. This tool requires the enclave debug information. The enclave module
should generate the debug information (/z1i/21/77 and /DEBUG) at
build time.

3. The enclave should be launched in debug mode. To launch the enclave
in debug mode, set the debug flag to 1 when calling sgx_create_enclave
to load the enclave.

NOTE:

Two versions of sgx_emmt are provided in the Intel® Software Guard Exten-
sions SDK: 32bit version and 64bit version. Cross utilizing the tool will cause a
measurement failure. By default, the 64bit version is utilized. To measure
32bit enclaves, use the 32bit version sgx emmt manually.

NOTE:
To enable the symbol files to be found by default, locate the symbol files
where they are generated or place the symbol files at current working dir-
ectory.

CPUSVN Configuration Tool

CPUSVN stands for Security Version Number of the CPU, which affects the key
derivation and report generation process. CPUSVN is not a numeric concept
and will be upgraded/downgraded along with the hardware upgrade/-
downgrade. To simulate the CPUSVN upgrade/downgrade without modifying
the hardware, the Intel® Software Guard Extensions SDK provides a CPUSVN
configuration tool for you to configure the CPUSVN. The CPUSVN con-
figuration tool is for Intel® SGX simulation mode only and can be launched as a
command line tool or as a GUI tool. It depends on your input.

Command-Line Syntax
To run the Intel® SGX CPUSVN configuration tool, use the following syntax:

sgx_config cpusvn [Command]

-43 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The valid commands are listed in the table below:

Table 6 CPUSVN Configuration Tool Commands

Command Description

-upgrade Simulate a CPUSVN upgrade.
-downgrade Simulate a CPUSVN downgrade.
—-reset Restore the CPUSVN to its default value.

If the [Command] is omitted, the tool will be launched as a GUI tool and the
following dialog will be shown. Then, you can simulate the CPUSVN upgrade/-

downgrade/reset by clicking the corresponding button.

/4 SGX Simulation CPUSVN Uﬁr_ S

Current CPUSWVN
4820f3376ae6b2f234d3b7a4b482778

Choose an option and apply. Only for SGX simulation mode
Options
Simulate to upgrade the CPUSWVN Upgrade

Simulate to downgrade the CPUSWVN Downgrade

Simulate to resetthe CPUSWVMN

| [cancel |

Figure 11 CPUSVN Configuration Tool Dialog

Intel® Software Guard Extensions Developer Reference for Windows* OS

Enclave Development Basics
This topic introduces the following enclave development basics:

« Writing Enclave Functions

 Calling Functions inside the Enclave

« Calling Functions outside the Enclave
 Linking Enclave with Libraries

« Linking Application with Untrusted Libraries
« Enclave Definition Language Syntax

» Loading and Unloading an Enclave

The typical enclave development process includes the following steps:

1. Use IDE plug-in wizard to generate an enclave project. See Using
Microsoft* Visual Studio* Intel® Software Guard Extensions Wizard for
additional details.

2. Define the interface between the untrusted application and the enclave

in the EDL file.

Implement the application and enclave functions.

4. Build the application and enclave. In the build process, Edger8r Tool gen-
erates trusted and untrusted proxy/bridge functions. Enclave Signing
Tool generates the metadata and signature for the enclave.

5. Run and debug the application in simulation and hardware modes. See
Enclave Debugger for more details.

6. Prepare the application and enclave for release.

w

Writing Enclave Functions

From an application perspective, making an enclave call (ECALL) appears as
any other function call when using the untrusted proxy function. Enclave func-
tions are plain C/C++ functions with several limitations.

The user can write enclave functions in C and C++ (native only). Other lan-
guages are not supported.

Enclave functions can rely on special versions of the C/C++ runtime libraries,
STL, synchronization and several other trusted libraries that are part of the
Intel® Software Guard Extensions SDK. These trusted libraries are specifically
designed to be used inside enclaves.

The user can write or use other trusted libraries, making sure the libraries fol-
low the same rules as the internal enclave functions:

-45 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

1. Enclave functions can't use all the available 32-bit or 64-bit instructions.
To check a list of illegal instructions inside an enclave, see Intel® Soft-
ware Guard Extensions Programming Reference.

2. Enclave functions will only run in user mode (ring 3). Using instructions
requiring other CPU privileges will cause the enclave to fault.

3. Function calls within an enclave are possible if the called function is stat-
ically linked to the enclave (the function needs to be in the enclave
image file). Windows* Dynamic libraries are not supported.

CAUTION:
The enclave signing process will fail if the enclave image contains any unre-
solved dependencies at build time.

Calling functions outside the enclave is possible using what are called OCALLs.
OCALLs are explained in detail in the Calling Functions outside the Enclave sec-
tion.

Table 7 Summary of Intel® SGX Rules and Limitations

Feature Supported/Comment
Languages Partially [Native C/C++. Enclave interface functions are lim-

ited to C (no C++).
C/C++ callsto |[No Can be done by explicit external calls (OCALLs).
other DLLs
C/C++ callsto |[No A trusted version of these libraries is supplied
System with the Intel® Software Guard Extensions SDK
provided and they can be used instead.
C/C++/STL
standard lib-
raries
OS API calls (for|No Can be done by explicit external calls (OCALLs).
example,
WIN32)
C++ frame- No Including MFC*, QT*, Boost* (partially — as long as
works Boost runtime is not used).
Call C++ class |Yes Including C++ classes, static and inline functions.
methods
Intrinsic func- |Partially [Supported only if they use supported instruc-
tions tions.

The allowed functions are included in the Intel®

-46 -

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

Intel® Software Guard Extensions Developer Reference for Windows* OS

Software Guard Extensions SDK.
Inline assembly |Partially |Same as the intrinsic functions.
Template func- |Partially |Only supported in enclave internal functions

tions

Ellipse (...) Partially |[Only supported in enclave internal functions
Varargs (va_ [Partially |Only supported in enclave internal functions.
list)

Synchronization|Partially |The Intel® Software Guard Extensions SDK
provides a collection of functions/objects for
synchronization: spin-lock, mutex, and condition

variable.
Threading sup- |Partially |Creating threads inside the enclave is not sup-
port ported. Threads that run inside the enclave are

created within the (untrusted) application. Spin-
locks, trusted mutex and condition variables API
can be used for thread synchronization inside the

enclave.
Thread Local |Partially |Only implicitly via declspec(thread), Thread_
Storage (TLS) local, or thread_local. No dynamic allocation of
TLS.
Dynamic Yes Enclave memory is a limited resource. Maximum
memory alloc- heap size is set at enclave creation.
ation
C++ Exceptions [Yes Although they have an impact on performance.
SEH Exceptions |No The Intel® Software Guard Extensions SDK

provides an API to allow you to register functions,
or exception handlers, to handle a limited set of
hardware exceptions. See Custom Exception
Handling for more details.

Calling Functions inside the Enclave

After an enclave is loaded successfully, you get an enclave ID, which is

provided as a parameter when the ECALLs are performed. Optionally, OCALLs
can be performed within an ECALL. For example, assume that you need to com-
pute some secret inside an enclave, the EDL file might look like the following:

// demo.edl

enclave {

-47 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

// Add your definition of "secret t" here
trusted {
public void get secret([out] secret t* secret);
bi
untrusted {
// This OCALL is for illustration purposes only.
// It should not be used in a real enclave,
// unless it is during the development phase
// for debugging purposes.
void dump_ secret ([in] const secret t* secret);

b

With the above EDL, the sgx _edger8r will generate an untrusted proxy func-
tion for the ECALL and a trusted proxy function for the OCALL:

Untrusted proxy function (called by the application):

sgx status t get secret(sgx enclave id t eid, secret t*
secret) ;

Trusted proxy function (called by the enclave):

sgx status t dump secret (const secret t* secret);

The generated untrusted proxy function will automatically call into the
enclave with the parameters to be passed to the real trusted function get
secret inside the enclave. To initiate an ECALL in the application:

// An enclave call (ECALL) will happen here
secret t secret;

sgx_status t status = get secret(eid, &secret);

The trusted functions inside the enclave can optionally do an OCALL to dump
the secret with the trusted proxy dump secret. It will automatically call out
of the enclave with the given parameters to be received by the real untrusted
function dump secret. The real untrusted function needs to be imple-
mented by the developer and linked with the application.

-48 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Checking the Return Value

The trusted and untrusted proxy functions return a value of type sgx
status_t.If the proxy function runs successfully, it will return SGX
SUCCESS. Otherwise, it indicates a specific error described in Error Codes sec-
tion. You can refer to the sample code shipped with the SDK for examples of
proper error handling.

Calling Functions outside the Enclave

In some cases, the code within the enclave needs to call external functions
which reside in untrusted (unprotected) memory to use operating system cap-
abilities outside the enclave such as system calls, I/O operations, and so on.
This type of function call is named OCALL.

These functions need to be declared in the EDL file in the untrusted section.
See Enclave Definition Language Syntax for more details.

The enclave image is loaded very similarly to how Windows*OS loads DLLs.
The function address space of the application is shared with the enclave so
the enclave code can indirectly call functions linked with the application that
created the enclave. Calling functions from the application directly is not per-
mitted and will raise an exception at runtime.

CAUTION:

The wrapper functions copy the parameters from protected (enclave)
memory to unprotected memory as the external function cannot access pro-
tected memory regions. In particular, the OCALL parameters are copied into
the untrusted stack. Depending on the number of parameters, the OCALL may
cause a stack overrun in the untrusted domain. The exception that this event
will trigger will appear to come from the code that the sgx_eder8r generates
based on the enclave EDL file. However, the exception can be easily detected
using the debugger.

CAUTION:

The wrapper functions will copy buffers (memory referenced by pointers) only
if these pointers are assigned special attributes in the EDL file.

CAUTION:
Certain trusted libraries distributed with the Intel® Software Guard Extensions
SDK provide an API that internally makes OCALLs. Currently, the Intel® Soft-
ware Guard Extensions mutex, condition variable, and CPUID APIs from sgx_
tstdc.lib make OCALLs. Similarly, the trusted support library sgx_tservice.lib,

- 49 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

which provides services from the Platform Services Enclave (PSE-Op), also
makes OCALLs. Developers who use these APIs must first import the needed
OCALL functions from their corresponding EDL files. Otherwise, developers
will get a linker error when the enclave is built. See the Importing

EDL Libraries for details on how to import OCALL functions from a trusted lib-
rary EDL file.

CAUTION:

To help identify problems caused by missing imports, all OCALL functions
used in the Intel® Software Guard Extensions SDK have the suffix ocall.For
instance, the linker error below indicates that the enclave needs to import the
OCALLs sgx thread wait untrusted event ocall() and sgx
thread set untrusted event ocall () thatare needed in
sethread mutex.obj,whichispart of sgx tstdc.lib.

sgx tstdc.lib(sethread mutex.obj) : error LNK2001l: unre-
solved external symbol sgx thread wait untrusted event
ocall

sgx_tstdc.lib(sethread mutex.obj) : error LNK200l: unre-
solved external symbol sgx thread set untrusted event
ocall

CAUTION:

Accessing protected memory from unprotected memory will result in abort
page semantics. This applies to all parts of the protected memory including
heap, stack, code and data.

Abort page semantics:

An attempt to read from a non-existent or disallowed resource returns all ones
for data (abort page). An attempt to write to a non-existent or disallowed phys-
ical resource is dropped. This behavior is unrelated to exception type abort
(the others being Fault and Trap).

OCALL functions have the following limitations/rules:

o OCALL functions must be C functions, or C++ functions with C linkage.

« Pointers that reference data within the enclave must be annotated with
pointer direction attributes in the EDL file. The wrapper function will per-
form shallow copy on these pointers. See Pointers for more information.

« Exceptions will not be caught within the enclave. The user must handle

-50 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

them in the untrusted wrapper function.
o OCALLs cannot have an ellipse (...) orava 1list intheir prototype.

Example 1: The definition of a simple OCALL function
Step 1 - Add a declaration for foo in the EDL file
// foo.edl

enclave {

untrusted {
[cdecl] void foo (int param);
b
Y

Step 2 (optional but highly recommended) — write a trusted, user-friendly
wrapper. This function is part of the enclave's trusted code.

The wrapper function ocall foo function will look like:
// enclave's trusted code

#include "foo t.h"

void ocall foo(int param)

{

// it is necessary to check the return value of foo()
if (foo(param) != SGX SUCCESS)
abort () ;

}

Step 3 — write an untrusted foo function.
// untrusted code

void foo(int param)

{

// the implementation of foo

}

The sgx_edger8r will generate an untrusted bridge function which will call
the untrusted function foo automatically. This untrusted bridge and the tar-
get untrusted function are part of the application, not the enclave.

-51-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Library Development for Enclaves

Trusted library is the term used to refer to a static library designed to be
linked with an enclave. The following list describes the features of trusted lib-
raries:

Trusted libraries are components of an Intel® SGX-based solution. They
typically undergo a more rigorous threat evaluation and review process
than a regular static library.

A trusted library is developed (or ported) with the specific purpose of
being used within an enclave. Therefore, it should not contain instruc-
tions that are not supported by the Intel® SGX architecture.

A subset of the trusted library APl may also be part of the enclave inter-
face. The trusted library interface that could be exposed to the untrus-
ted domain is defined in an EDL file. If present, this EDL file is a key
component of the trusted library.

A trusted library may have to be shipped with an untrusted library. Func-
tions within the trusted library may make OCALLs outside the enclave. If
an external function that the trusted library uses is not provided by the
libraries available on the platform, the trusted library will require an
untrusted support library.

In summary, a trusted library, in addition to the . 1ib file containing the trus-
ted code and data, may also include an . ed1 file as well as an untrusted . 1ib

file.

This topic describes the process of developing a trusted library and provides
an overview of the main steps necessary to build an enclave that uses such a
trusted library.

1.

2.

The ISV provides a trusted library including the trusted functions
(without any edge-routines) and, when necessary, an EDL file and an
untrusted support library. To develop a trusted library, an ISV should cre-
ate an enclave project and choose the library option in the Intel®

SGX Wizard. This ensures the library is built with the appropriate set-
tings. The ISV might delete the EDL file from the project if the trusted lib-
rary only provides an interface to be invoked within an enclave. The ISV
should create a standard static library project for the untrusted support
library, if required.

Add a “from/import” statement with the library EDL file path and name

-52 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

to the enclave EDL file. The import statement indicates which trusted
functions (ECALLs) from the library may be called from outside the
enclave and which untrusted functions (OCALLs) are called from within
the trusted library. You may import all ECALLs and OCALLs from the trus-
ted library or select a specific subset of them.

A library EDL file may import additional library EDL files building a hier-
archical structure. For additional details, See Importing EDL Libraries.

3. During the enclave build process, the sgx edger8r generates
proxy/bridge code for all the trusted and untrusted functions. The gen-
erated code accounts for the functions declared in the enclave EDL file

as well as any imported trusted library EDL file.
4. The trusted library and trusted proxy/bridge functions are linked to the
enclave code.

NOTE:

If you use the wildcard option to import a trusted library, the resulting
enclave contains the trusted bridge functions for all ECALLs and their cor-
responding implementations. The linker will not be able to optimize this
code out.

5. The Intel® SGX application is linked to the untrusted proxy/bridge code.
Similarly, when the wildcard import option is used, the untrusted bridge
functions for all the OCALLs will be linked in.

Avoiding Name Collisions

An application may be designed to work with multiple enclaves. In this scen-
ario, each enclave would still be an independent compilation unit resulting in a
separate DLL file.

Enclaves, like regular DLL files, should provide a unique interface to avoid
name collisions when an untrusted application is linked with the edge-routines
of several enclaves. The sgx edger8r prevents name collisions among
OCALL functions because it automatically prepends the enclave name to the
names of the untrusted bridge functions. However, ISVs must ensure the
uniqueness of the ECALL function names across enclaves to prevent collisions
among ECALL functions.

Despite having unique ECALL function names, name collision may also occur as
the result of developing an Intel® SGX application. This happens because an
enclave cannot import another DLL file. When two enclaves import the same

-53 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

ECALL function from a trusted library, the set of edge-routines for each
enclave will contain identical untrusted proxy functions and marshaling data
structures for the imported ECALL. Thus, the linker will emit an error when the
application is linked with these two sets of edge-routines. To build an applic-
ation with more than one enclave when these enclaves import the same ECALL
from a trusted library, ISVs have to:

1. Provide the --use-prefix optionto sgx edger8r, which will pre-
pend the enclave name to the untrusted proxy function names. For
instance, when an enclave uses the local attestation trusted library
sample code included in the Intel® SGX SDK, the enclave EDL file must
be parsed with the --use-prefix optionto sgx edger8r.See Local
Attestation for additional details.

2. Prefix all ECALLs in their untrusted code with the enclave name, match-
ing the new proxy function names.

Linking Enclave with Libraries

This topic introduces how to link an enclave with the following types of lib-
raries:

o Dynamic libraries
o Static Libraries
e Simulation Libraries

Dynamic Libraries

An enclave DLL must not depend on any dynamically linked library in any way.
The enclave loader has been intentionally designed to prohibit dynamic link-
ing of libraries within an enclave. The protection of an enclave is dependent
upon obtaining an accurate measurement of all code and data that is placed
into the enclave at load time; thus, dynamic linking would add complexity
without providing any benefit over static linking.

CAUTION:
The enclave image signing process will fail if the enclave file has any unre-
solved dependencies. It means that an enclave must have an empty IAT
(Import Address Table).

Static Libraries
You can link with static libraries as long as they do not have any dependencies.

-54 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The Intel® Software Guard Extensions Software Development Kit (Intel® SGX
SDK) provides the following collection of trusted libraries.

Table 8 Trusted Libraries included in the Intel® SGX SDK

for enclave code confidentiality

Name Description Comment

sgx_trts.lib|intel® SGX Runtime library Must link when
running in HW
mode

sgx_trts Intel® SGX Runtime library (simulation Must link when

sim.lib mode) running in sim-
ulation mode

Sgx_ Standard C library (math, string, and so on.) |Must link

tstdc.1lib

sgx_tcxx.lib|Standard C++ libraries, STL Optional

sgx_tser- Data seal/unseal (encryption), trusted Archi- |Must link when

vice.lib tectural Enclaves support, Elliptic Curve Dif- |using HW

fie-Hellman (EC DH) library, and so on. mode

sgx_tser- The counterpart of sgx_tservice.lib for sim- [Must link when

vice sim.libjulation mode using sim-
ulation mode

sSgx_ Cryptographic library Must link

tcrypto.lib

sgx_tkey Trusted key exchange library Optional

exchange.lib

sgx_tpro- Protected File System library Optional

tected

fs.1lib

sgx_tedm- Support for Intel® SGX Enclave Dynamic Optional,

m.lib Memory Management (Intel® SGX EDMM) on |Import sgx_

Intel® SGX 2.0 hardware platforms tedmm.edl

libsgx_ Switchless Enclave Function Calls Optional

tswitchless.asgx_

tswitchless.lib

sgx_pcl.lib |Enables Intel® SGX Protected Code Loader |Optional

-55 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Simulation Libraries

The Intel® SGX SDK provides simulation libraries to run application enclaves in
simulation mode (Intel® SGX hardware is not required). There are an untrusted
simulation library and a trusted simulation library. The untrusted simulation lib-
rary provides the functionality that the untrusted runtime library requires to
manage an enclave linked with the trusted simulation library, including the sim-
ulation of the Intel® SGX instructions executed outside the enclave: ECREATE,
EADD, EEXTEND, EINIT, EREMOVE, and EENTER. The trusted simulation library
is primarily responsible for simulating the Intel® SGX instructions that can
execute inside an enclave: EEXIT, EGETKEY, and EREPORT.

NOTE

Simulation mode does not require the Intel SGX support in the CPU. However,
the processor must support the Intel® Streaming SIMD Extensions 4.1 instruc-
tions at least.

Linking Application with Untrusted Libraries

The Intel® Software Guard Extensions SDK provides the following collection of
untrusted libraries.

Table 9 Untrusted Libraries included in the Intel® SGX SDK

Name Description Comment
sgx_urts.lib |Provides functionality for applications|Must link when run-
to manage enclaves ning in HW mode.

sgx_urts.dllis
included in Intel®

SGX PSW
sgx_urts_sim- |uRTS library used in simulation mode |Dynamically linked
d.dll
sgx_urts The counterpartof sgx_urts.libfor |Mustlinkwhenrun-
sim.1lib simulation mode ning in simulation

mode
sgx_uae_ ser- |Provides both enclaves and untrus- |Must link when run-
vice.lib ted applications access to services |ning in HW mode.

provided by the AEs

Sgx_uae_ ser-
vice.dllis
included in Intel®
SGX PSW

-56 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Sgx_uae_ser-
vice sim.dll

Untrusted AE support library used in
simulation mode

Dynamically linked

SgX_uae ser-
vice sim.lib

The counterpart of sgx uae ser-
vice.lib for simulation mode

Must link when run-
ning in simulation
mode

sgx_ukey
exchange.lib

Untrusted key exchange library (built
with /MD)

Optional

sgx_ukey
exchangemt.lib

Untrusted key exchange library (built
with /MT)

Optional

sgx_ status.dll

Provides functionality for applications
to register Enclave Signing Key White
List Certificate Chain

Optional

SgxX_cap-
able.dll

Provides functionality for applications
to query Intel® SGX device status and
the version of PSW installed, or to
enable the Intel® SGX device.

Optional

sgx_uprotected _
fs.lib

Provides implementation for system
calls outside an enclave required by

Intel® Protected File System library.

Optional

Loading Untrusted Intel® SGX DLLs

The Intel® SGX DLLs shipped with the Intel®* SGX PSW (sgx _urts.dl1l and
sgx_uae service.dll)are installed in the system directory. You must
lock down the Intel® SGX application installation directory. Otherwise, you

must explicitly load

these two DLLs.

Suppose an attacker gains control over the directory where the application is
installed and inserts a malicious copy of an Intel® SGX DLL in that directory. If

the application implicitly loads the Intel® SGX DLLs, then the bad copy will get
loaded before the original Intel® SGX DLLs from the system path.

To make sure that an Intel® SGX application is loading the Intel® SGX DLLs
from the system directory, the application should explicitly load the two DLLs
in the following order:

1. sgx_uae_service.dll

2. sgx_urtsdll

-57 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Enclave Definition Language Syntax

Enclave Definition Language (EDL) files are meant to describe enclave trusted
and untrusted functions and types used in the function prototypes. Edger8r
Tool uses this file to create C wrapper functions for both enclave exports
(used by ECALLs) and imports (used by OCALLs).

EDL Template

enclave {

//Include files
//Import other edl files

//Data structure declarations to be used as parameters of the
//function prototypes in edl

trusted {
//Include header files if any
//Will be includedd in enclave t.h

//Trusted function prototypes
i

untrusted {
//Include header files if any
//Will be included in enclave u.hhead

//Untrusted function prototypes
i
b7

The trusted block is optional only if it is used as a library EDL, and this EDL
would be imported by other EDL files. However the untrusted block is always
optional.

Every EDL file follows this generic format:

enclave {

// An EDL file can optionally import functions from

// other EDL files

from “other/file.edl” import foo, bar; // selective importing
from “another/file.edl” import *; // dimport all functions

// Include C headers, these headers will be included in the

// generated files for both trusted and untrusted routines
include "string.h"

-58 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

include "mytypes.h"

// Type definitions (struct, union, enum), optional
struct mysecret {

int key;

const char* text;

b
enum boolean { FALSE = 0, TRUE = 1 };

// Export functions (ECALLs), optional for library EDLs

trusted {
//Include header files if any
//Will be included in enclave t.h

//Trusted function prototypes
public void set secret([in] struct mysecret* psecret);

void some private func(enum boolean b); // private ECALL
(non-root ECALL) .
}i

// Import functions (OCALLs), optional

untrusted {

//Include header files if any

//Will be included in enclave u.h

//Will be inserted in untrusted header file
“untrusted.h”

//Untrusted function prototypes

// This OCALL is not allowed to make another ECALL.
void ocall print();

// This OCALL can make an ECALL to function

// “some private func”.

int another ocall([in] struct mysecret* psecret)
allow (some private func);

Comments
Both types of C/C++ comments are valid.

Example

enclave {

include “stdio.h” // include stdio header
include “../../util.h” /* this header defines some custom public

types */

-590 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Include Headers

Include C headers which define types (C structs, unions, typedefs, etc.); oth-
erwise auto generated code cannot be compiled if these types are referenced
in EDL. The included header file can be global or belong to trusted functions
or untrusted functions only.

A global included header file doesn't mean that the same header file is
included in the enclave and untrusted application code. In the following
example, the enclave will use the stdio.h from the Intel® Software Guard
Extensions SDK. While the application code will use the stdio.h shipped
with the host compiler.

Using the include directive is convenient when developers are migrating
existing code to the Intel SGX technology, since data types are defined
already in this case. Similar to other IDL languages like Microsoft* interface
definition language (MIDL*) and CORBA* interface definition language (OMG-
IDL), a user can define data types inside the EDL file and sgx_edger8r will
generate a C header file with the data type definitions. For a list of supported
data types with in EDL, see Basic Types.

Syntax

include “filename.h”

Example

enclave {

include “stdio.h” // global headers
include “../../util.h”
trusted {
include “foo.h” // for trusted functions only
bi
untrusted {
include “bar.h” // for untrusted functions only
i
}i
Keywords

The identifiers listed in the following table are reserved for use as keywords of
the Enclave Definition Language.

Table 10 EDL Reserved Keywords

-60 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Data Types

char |short |int float double void
int8_t [int16_t int32_t |int64_t |size_t wchar_t
uint8_t uint16_Juint32_t [uint64_t junsigned struct

t

union |enum |[long

Pointer Parameter Handling

in out user_ count size readonly
check
isptr |string |wstring
Others
enclave|from |import trusted |untrusted include
public |allow |isary const propagate_ transition_using_
errno threads
Function Calling Convention
cdecl |stdcall [fastcall dllimport
Basic Types

EDL supports the following basic types:

char, short, long, int, float, double, void, int8 t,
intl6 t, int32 t, int64 t, size t, wchar t, uint8 t,
uintl6 t, uint32 t, uinté4 t, unsigned, struct, enum,

union.

It also supports 1ong long and 64-bit 1ong double.
Basic data types can be modified using the C modifiers:

const, *, [].

Additional types can be defined by including a C header file.

Pointers
EDL defines several attributes that can be used with pointers:

in, out, user check, string, wstring, size, count,
isptr, readonly.

-61 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Each of them is explained in the following topics.

CAUTION:

The pointer attributes explained in this topic apply to ECALL and OCALL func-
tion parameters exclusively, not to the pointers returned by an ECALL or
OCALL function. Thus, pointers returned by an ECALL or OCALL function are
not checked by the edge-routines and must be verified by the enclave and
application code.

Pointer Handling

Pointers should be decorated with either a pointer direction attribute in, out
orauser check attribute explicitly. The [in] and [out] serve as direction
attributes.

« [in] - when [in] is specified for a pointer argument, the parameter is
passed from the calling procedure to the called procedure. For an ECALL
the in parameter is passed from the application to the enclave, for an
OCALL the parameter is passed from the enclave to the application.

« [out] —when [out] is specified for a pointer argument, the parameter is
returned from the called procedure to the calling procedure. In an ECALL
function an out parameter is passed from the enclave to the application
and an OCALL function passes it from the application to the enclave.

« [in] and [out] attributes may be combined. In this case the parameter is
passed in both directions.

The direction attribute instructs the trusted edge-routines (trusted bridge
and trusted proxy) to copy the buffer pointed by the pointer. In order to copy
the buffer contents, the trusted edge-routines have to know how much data
needs to be copied. For this reason, the direction attribute is usually followed
by a size or count modifier. If neither of these is provided nor the pointer is
NULL, the trusted edge-routine assumes a count of one. When a buffer is
being copied, the trusted bridge must avoid overwriting enclave memory in
an ECALL and the trusted proxy must avoid leaking secrets in an OCALL. To
accomplish this goal, pointers passed as ECALL parameters must point to
untrusted memory and pointers passed as OCALL parameters must point to
trusted memory. If these conditions are not satisfied, the trusted bridge and
the trusted proxy will report an error at runtime, respectively, and the ECALL
and OCALL functions will not be executed.

You may use the direction attribute to trade protection for performance.
Otherwise, you must use the user check attribute described below and

-62 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

validate the data obtained from untrusted memory via pointers before using
it, since the memory a pointer points to could change unexpectedly because it
is stored in untrusted memory. However, the direction attribute does not help
with structures that contain pointers. In this scenario, you have to validate and
copy the buffer contents, recursively if needed, yourself. Alternatively, you can
define a structure that can be deep copied. See Structure Deep Copy for
more information.

Example
enclave {

trusted {
public void test ecall user check([user check] int * ptr);
public void test ecall in([in] int * ptr);
public void test ecall out([out] int * ptr);
public void test ecall in out([in, out] int * ptr);
}i
untrusted {
void test ocall user check([user check] int * ptr);
void test ocall in([in] int * ptr);
void test ocall out([out] int * ptr);
vold test ocall in out([in, out] int * ptr);

};
b

Unsupported Syntax:
enclave {

trusted {

// Pointers without a direction attribute
// or ‘user check’ are not allowed
public void test ecall not (int * ptr);

// Function pointers are not allowed
public void test ecall func([in]int (*func ptr) ());
bi
}i

In the example shown above:

-63 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

For ECALL:

o [user_check]: In the function test ecall user check,the pointer
ptr will not be verified; you should verify the pointer passed to the trus-
ted function. The buffer pointed to by ptr is not copied to inside buffer
either.

o [in]:Inthe function test ecall in,a buffer with the same size as the
data type of ‘ptr'(int) will be allocated inside the enclave. Content poin-
ted to by ptr, one integer value, will be copied into the new allocated
memory inside. Any changes performed inside the enclave will not be vis-
ible to the untrusted application.

o [out]:In the function test ecall out,a buffer with the same size as
the data type of ‘ptr'(int) will be allocated inside the enclave, but the
content pointed to by ptr, one integer value will not be copied. Instead,
it will be initialized to zero. After the trusted function returns, the buffer
inside the enclave will be copied to the outside buffer pointed to by
ptr.

o [in, out]: In the function test ecall in out,a buffer with the same
size will be allocated inside the enclave, the content pointed to by ptr,
one integer value, will be copied to this buffer. After returning, the buffer
inside the enclave will be copied to the outside buffer.

For OCALL:

o [user_check]: In the function test ocall user check,the pointer
ptr will not be verified; the buffer pointed to by ptr is not copied to an
outside buffer. Besides, the application cannot read/modify the memory
pointed to by ptr, if pt r points to enclave memory.

o [in]: In the function test ocall in,a buffer with the same size as the
data type of ptr(int) will be allocated in the 'application' side (untrusted
side). Content pointed to by ptr, one integer value, will be copied into
the newly allocated memory outside. Any changes performed by the
application will not be visible inside the enclave.

 [out]:In the function test ocall out,a buffer with the same size as
the data type of ptr(int) will be allocated on the application side (untrus-
ted side) and its content will be initialized to zero. After the untrusted
function returns, the buffer outside the enclave will be copied to the
enclave buffer pointed to by ptr.

-64 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

o [in,out]: Inthe function test ocall in out,a buffer with the same
size will be allocated in the application side, the content pointed to by
ptr,one integer value, will be copied to this buffer. After returning, the
buffer outside the enclave will be copied into the inside enclave buffer.

The following table summarizes behavior of wrapper functions when using the
infout attributes:

Table 11 Behavior of wrapper functions when using the in/out attributes

ECALL OCALL

user_|Pointer is not checked. Users must per- |Pointer is not checked. Users

check{form the check and/or copy. must perform the check

and/or copy

in Buffer copied from the application into [Buffer copied from the
the enclave. Afterwards, changes will enclave to the application.
only affect the buffer inside enclave. Must be used if pointer points
Safe but slow. to enclave data.

out |Trusted wrapper function will allocate a [The untrusted buffer will be
buffer to be used by the enclave. Upon |copied into the enclave by
return, this buffer will be copied to the [the trusted wrapper function.
original buffer. Safe but slow.

in, Combines in and out behavior. Data is |[Same as ECALLs.

out |copied back and forth.

EDL cannot analyze C typedefs and macros found in C headers. If a pointer
type is aliased to a type/macro that does not have an asterisk (*), the EDL
parser may report an error or not properly copy the pointer’s data.

In such cases, declare the type with [isptr] attribute to indicate that it is a
pointer type. See User Defined Data Types for more information.

Example:

// Error,

void

foo([in, size=4]

// OK

void

// OK,

void

// OK,

foo([in, size=4] void*

“isptr” indicates “PVOID”

foo([in, isptr, size=4]

opaque type, copy by value

PVOID is not a pointer in EDL

PVOID buffer);

buffer);

is pointer type

PVOID buffer);

- 65 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

// Actual address must be in untrusted memory

void foo (HWND hWnd) ;

Pointer Handling in ECALLs

In ECALLs, the trusted bridge checks that the marshaling structure does not
overlap with the enclave memory, and automatically allocates space on the
trusted stack to hold a copy of the structure. Then it checks that pointer para-
meters with their full range do not overlap with the enclave memory. When a
pointer to the untrusted memory with the in attribute is passed to the
enclave, the trusted bridge allocates memory inside the enclave and copies
the memory pointed to by the pointer from outside to the enclave memory.
When a pointer to the untrusted memory with the out attribute is passed to
the enclave, the trusted bridge allocates a buffer in the trusted memory, zer-
oes the buffer contents to clear any previous data and passes a pointer to this
buffer to the trusted function. After the trusted function returns, the trusted
bridge copies the contents of the trusted buffer to untrusted memory. When
the in and out attributes are combined, the trusted bridge allocates memory
inside the enclave, makes a copy of the buffer in the trusted memory before
calling the trusted function, and once the trusted function returns, the trusted
bridge copies the contents of the trusted buffer to the untrusted memory.
The amount of data copied out is the same as the amount of data copied in.

NOTE:
When an ECALL with a pointer parameter with out attribute returns, the trus-
ted bridge always copies data from the buffer in enclave memory to the buffer
outside. You must clear all sensitive data from that buffer on failure.

Before the trusted bridge returns, it frees all the trusted heap memory alloc-
ated at the beginning of the ECALL function for pointer parameters with a dir-
ection attribute. Attempting to use a buffer allocated by the trusted bridge
after it returns results in undefined behavior.

Pointer Handling in OCALLs

For OCALLs, the trusted proxy allocates memory on the outside stack to pass
the marshaling structure and checks that the pointer parameters with their full
range are within enclave. When a pointer to trusted memory with the in attrib-
ute is passed from an enclave (an OCALL), the trusted proxy allocates memory
outside the enclave and copies the memory pointed by the pointer from

inside the enclave to the untrusted memory. When a pointer to the trusted
memory with the out attribute is passed from an enclave (an OCALL), the trus-
ted proxy allocates a buffer on the untrusted stack, and passes a pointer to

- 66 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

this buffer to the untrusted function. After the untrusted function returns, the
trusted proxy copies the contents of the untrusted buffer to the trusted
memory. When the in and out attributes are combined, the trusted proxy
allocates memory outside the enclave, makes a copy of the buffer in the
untrusted memory before calling the untrusted function, and after the untrus-
ted function returns the trusted proxy copies the contents of the untrusted
buffer to the trusted memory. The amount of data copied out is the same as
the amount of data copied in.

When the trusted proxy function returns, it frees all the untrusted stack
memory allocated at the beginning of the OCALL function for the pointer para-
meters with a direction attribute. Attempting to use a buffer allocated by the
trusted proxy after it returns results in undefined behavior.

Attribute: user_check

In certain situations, the restrictions imposed by the direction attribute may
not support the application needs for data communication across the enclave
boundary. For instance, a buffer might be too large to fit in enclave memory
and needs to be fragmented into smaller blocks that are then processed in a
series of ECALLs, or an application might require passing a pointer to trusted
memory (enclave context) as an ECALL parameter.

To support these specific scenarios, the EDL language provides the user
check attribute. Parameters declared with the user check attribute do not
undergo any of the checks described for [in] and [out] attributes.
However, you must understand the risks associated with passing pointersin
and out the enclave, in general, and the user check attribute, in particular.
You must ensure that all the pointer checking and data copying are done cor-
rectly or risk compromising enclave secrets.

Buffer Size Calculation

The generalized formula for calculating the buffer size using these attributes:

Total number of bytes = count * size

o The above formula holds when both count and size are specified.

« If count is not specified for the pointer parameter, then it is assumed to
be equalto 1,i.e, count=1.Then total number of bytes equals to size.

« If size is not specified, then the buffer size is calculated using the
above formula where size is sizeof (element pointed by the pointer).

-67 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Attribute: size

The size attribute is used to indicate the buffer size in bytes used for copy
depending on the direction attribute ([in]/[out]) (when there is no count
attribute specified). This attribute is needed because the trusted bridge
needs to know the whole range of the buffer passed as a pointer to ensure it
does not overlap with the enclave memory, and to copy the contents of the
buffer from untrusted memory to trusted memory and/or vice versa depend-
ing on the direction attribute. The size may be either an integer constant or
one of the parameters to the function. si ze attribute is generally used for
void pointers.

Example
enclave({

trusted {
// Copies '100' bytes
public void test sizel([in, size=100] void* ptr, size t len);
// Copies ‘len’ bytes

public void test size2([in, size=len] void* ptr, size t len);
}i
b

Unsupported Syntax:

enclave({

trusted {

// size/count attributes must be used with
// pointer direction ([in, out])
void test attribute cant([size=len] void* ptr, size t len);
i
}i

Attribute: count

The count attribute is used to indicate a block of sizeof element pointed by
the pointer in bytes used for copy depending on the direction attribute. The
count and size attribute modifiers serve the same purpose. The number of
bytes copied by the trusted bridge or trusted proxy is the product of the
count and the size of the data type to which the parameter points. The count
may be either an integer constant or one of the parameters to the function.

-68 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The size and count attribute modifiers may also be combined. In this case,
the trusted edge-routine will copy a number of bytes that is the product of
the count and size parameters (size*count) specified in the function declar-
ation in the EDL file.

Example
enclave({

trusted {
// Copies cnt * sizeof (int) bytes
public void test count([in, count=cnt] int* ptr, unsigned
cnt) ;

// Copies cnt * len bytes
public void test count size([in, count=cnt, size=len] int*
ptr, unsigned cnt, size t len);
bi
}i

Strings

The attributes string and wstring indicate that the parameter is a NULL
terminated C string or a NULL terminated wchar t string, respectively. To
prevent "check first, use later" type of attacks, the trusted edge-routine first
operates in untrusted memory to determine the length of the string. Once the
string has been copied into the enclave, the trusted bridge explicitly

NULL terminates the string. The size of the buffer allocated in trusted memory
accounts for the length determined in the first step as well as the size of the
string termination character.

NOTE
There are some limitations on the usage of string and wstring attributes:

e stringand wstring must not be combined with any other modifier
suchas size,or count.

e stringand wstring cannot be used with out alone. However,
stringand wstring with both in and out are accepted.

e string canonly be used for char pointers; while wsting can only be
used for wchar_t pointers.

Example

enclave {

trusted {

-69 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

// Cannot use [out] with "string/wstring" alone
// Using [in] , or [in, out] is acceptable
public void test string([in, out, string] char* str);

public void test wstring([in, out, wstring] char* wstr);

public void test const string([in, string] const char* str);

};
b

Unsupported Syntax:

enclave {

include "user types.h" //for typedef void const * pBuf2;

trusted {

// string/wstring attributes must be used

// with pointer direction

void test string cant([string] char* ptr);

voild test string cant usercheck([user check, string] char*

ptr);

// string/wstring attributes cannot be used
// with [out] attribute
void test string out ([out, string] char* str);

// string/wstring attributes musted be used
// for char/wchar t pointers
void test string out([in, string] void* str);

i
b7
In the first example, when the st ring attribute is used for function test
string,strlen (str) +1 isused as the size for copying the string in and out
of the enclave. The extra byte is for null termination.

In the function test wstring,wcslen (str)+1 (two-byte units) will be
used as the size for copying the string in and out of the enclave.

const Keyword

The EDL language accepts the const keyword with the same meaning as the
const keyword in the C standard. However, the support for this keyword is
limited in the EDL language. It may only be used with pointers and as the out-
ermost qualifier. This satisfies the most important usage in Intel® SGX, which is
to detect conflicts between const pointers (pointers to const data) with the

-70 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

out attribute. Other forms of the const keyword supported in the C stand-
ard are not supported in the EDL language.

Structures, Enums and Unions

Basic types and user defined data types can be used inside the struc-
ture/union except it differs from the standard in the following ways:

Unsupported Syntax:
enclave{

// 1. Each member of the structure has to be
// defined separately
struct data def tf{
int a, b, c¢; // Not allowed
// It has to be int a; int b; int c;

b

// 2. Bit fields in structures/unions are not allowed.
struct bitfields tf{

short 1 : 3;

short 3 : 6;

short k : 7;
b

//3. Nested structure definition is not allowed
struct my struct t{
int out val;
float out fval;
struct inner struct t{
int in val;
float in fval;
b
b
b

Valid Syntax:

enclave({

include "user types.h" //for ufloat: typedef float ufloat

struct struct foo t {
uint32 t struct foo 0;
uint64 t struct foo 1;
}i

enum enum_ foo t {
ENUM_FOO 0
ENUM FOO 1

([l
= o
~

}i

union union_ foo_ t {

Intel® Software Guard Extensions Developer Reference for Windows* OS

uint32 t union_ foo 0;
uint32 t union_ foo 1;
uint64 t union foo 3;

}i
trusted {

public
public
public

public
public
public
public

public
public

public
public

public
public

public
public

b

void
void
void

void
void
void
void

void
void

void
void

void
void

void
void

test char (char val);
test _int (int val);
test long(long long val);

test float(float wval);

test ufloat (ufloat val);

test double (double val);

test long double(long double val);

test size t(size t val);
test wchar t(wchar t val);

test struct(struct struct foo t val);
test struct2(struct foo t val);

test enum(enum enum_ foo t val);
test _enum2 (enum_ foo t wval);

test union(union union foot t wval);
test union2 (union foo t wval);

NOTE:

When referencing a structure, enum or union inside the EDL file, you must fol-
low C style and use the corresponding key word struct ,enum or union.

Structure Deep Copy

Member pointers in a structure can be decorated with a buffer size attribute
size,or count toindicate deep copy structure instead of shallow copy.
When the trusted edge-routines copy the buffer pointed by the structure
pointer, they also copy the buffer pointed by the structure member pointer
instructed by direction attribute of the structure pointer. The member pointer
values are also modified accordingly.

The buffer size of the structure must be a multiple of structure size and the
buffer is deep copied as an array of structure. Since function call by value
make a shallow copy, deep copy structure is not allowed to call by value. Dir-
ection attribute of deep copy structure pointer canbe inand in, out.Ifa

-72 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

member pointer is not basic type, trusted edge-routines don't deep copy it
recursively .

Example
enclave {

struct struct foo t {
uint32 t count;
size t size;

[count = count, size = size] uint64 t* buf;
bi
trusted {
public void test ecall deep copy([in, count = 1] struct

struct foo t * ptr);
}i
bi

Before calling the ecall, prepare the following data in untrusted domain as
parameter:

struct struct foo t foo = { 4, 8, data};

foo.count = 4;
foo.size = 8;
foo.buf = address of data[] in untrusted domain.
data[] = {0x1112131415161718,
0x2122232425262728,
0x3132333435363738,

0x4142434445464748}

After calling the ecall, the data in trusted domain will be:

struct struct foo t foo = { 4, 8, data2};

foo.count = 4;

foo.size = 8;

foo.buf = address of data2[] in trusted domain.

data2[] {0x1112131415161718,
0x2122232425262728,
0x3132333435363738,
0x4142434445464748}

NOTE:

When deep copying a pointer parameter with in attribute in an OCALL, the
pointer in the structure, which is the address of a trusted domain, is copied to
untrusted domain ephemerally. You must avoid this scenario if the address is
sensitive data.

-73 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Arrays
The Enclave Definition Language (EDL) supports multidimensional, fixed-size
arrays to be used in data structure definition and parameter declaration.

Arrays also should be decorated with the attribute [in], [out] or [user
check] explicitly, which are similar to the pointers.

NOTE
Limitations on the array usage:

« size/count cannot be used for array types

« const cannot be used for array types

« Zero-length arrays or flexible arrays are not supported by EDL syntax
« Pointer arrays are not supported by EDL syntax

Example
enclave {
include "user types.h" //for uArray - typedef int uArray[10];
trusted {
public void test array([in] int arr[4]);

public void test array multi([in] int arr[4][4]);

};
b7

Unsupported Syntax:
enclave {
include "user types.h" //for uArray - typedef int uArray[10];

trusted {

// Flexible array is not supported
public void test flexible(int arr[][4]);

// Zero-length array is not supported.
public void test zero(int arr[0]);

}i
b

A special attribute i sary is used to designate function parameters that are of
a user defined type array. See User Defined Data Types for more information.

-74 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

User Defined Data Types

The Enclave Definition Language (EDL) supports user defined data types, but
should be defined in a header file. Any basic datatype which is typedef'ed into
another becomes a user defined data type.

Some user data types need to be annotated with special EDL attributes, such
as isptr,isary and readonly. If one of these attributes is missing when a
user-defined type parameter requires it so, the compiler will emit a com-
pilation error in the code that sgx edger8r generates.

« When there is a user defined data type for a pointer, i sptr is used to
indicate that the user defined parameter is a pointer. See Pointers for
more information.

o When there is a user defined data type for arrays, i sary is used to indic-
ate that the user defined parameter is an array. See Arrays for more
information.

o When an ECALL or OCALL parameter is a user defined type of a pointer
to a const data type, the parameter should be annotated with the
readonly attribute.

NOTE
isptr,isaryand readonly can only be used to decorate a user defined
data type. Do not use them for any basic types, pointers or arrays.

readonly canonly be used with i sptr attribute. Any other usage of
readonly is not allowed.

Example
enclave {

include "user types.h" // for typedef void * pBuf;
// and typedef void const * pBuf2;
// and typedef int uArray[10];

trusted {

public void test isptr(
[in, isptr, size=len] pBuf pBufptr,
size t len);

public void test isptr_ readonly(

[in, isptr, readonly, size=len] pBuf2 pBuflptr,
size t len);

-75-

Intel® Software Guard Extensions Developer Reference for Windows* OS

public void test isary([in, isary] uArray arr);
b
Y

Unsupported Syntax:

enclave {

include "user types.h" //for typedef void const * pBuf2;
// and typedef int uArray[10];

trusted {
// Cannot use [out] when using [readonly] attribute
void test isptr readonly cant (
[in, out, isptr, readonly, size=len] pBuf2
pBuflptr,
size t len);

// 1sptr cannot be used for pointers/arrays

public void test isptr cantl (
[in, isptr, size=len] pBuf* pBufptr,
size t len);

public void test isptr cant2 (
[in, isptr, size=len] void* pBufptr,
size t len);

// User-defined array types need "isary"
public void test miss isary([in] uArray arr);

// size/count attributes cannot be used for user-defined

array types

public void test isary cant size(
[in, size=len] uArray arr,
size t len);,

// 1sary cannot be used for pointers/arrays
public void test isary cant(
[in, isary] uArray arr[4]);

i
}i
In the function test isptr readonly,pBuf2 (typedef void const *
pBuf?2)is auser defined pointer type, so isptr is used to indicate thatitisa
user defined type. Also, the pBuf f2ptr is readonly, SO you cannot use the
out attribute.

Preprocessor Capability

The EDL language supports macro definition and conditional compilation dir-
ectives. To provide this capability, the sgx edger8r first uses the compiler
preprocessor to parse the EDL file. Once all preprocessor tokens have been

-76 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

translated, the sgx edger8r then parses the resulting file as regular EDL lan-
guage. This means that developers may define simple macros and use con-
ditional compilation directives to easily remove debug and test capabilities
from production enclaves, reducing the attack surface of an enclave. See the
following EDL example.

#define SGX DEBUG

enclave {

trusted {
// ECALL definitions
}

untrusted {
// OCALL definitions

#ifdef SGX_ DEBUG

void print ([in, string] const char * str);

#endif
}

}

The current sgx_edger8r does not propagate macro definitions from the
EDL file into the generated edge-routines. As a result, you need to duplicate
macro definitions in both the EDL file as well as in the compiler arguments or
other source files.

We recommend you only use simple macro definitions and conditional com-
pilation directives in your EDL files.

The sgx edger8r starts searching the PATH for the Intel® compiler. If it does
not find the Intel compiler, then it searches for the Microsoft* Visual Studio
compiler. The sgx_edger8r uses the first compiler it finds. However, if the
sgx_edger8r does not find any compiler in the PATH, it then looks for the
Visual Studio compiler in the registry. If the sgx edger8r still cannot find a
compiler, it will then generate a warning message and will parse the EDL dir-
ectly. to parse macros and conditional compilation directives that might be in
the EDL file. You may override the default search behavior or even specify a
different preprocessor with the --preprocessor option.

Function Calling Convention for OCALLs

Untrusted functions can optionally receive attributes that affect their calling
convention and DLL linkage. You can find details on these calling conventions
at http://msdn.microsoft.com/en-us/library/984x0h58

The cdec1 calling convention is the default as defined by the C standard.

-77 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Improper use of the cdecl, stdcall or fastcall keywords may resultina
linker error.

OCALL functions (untrusted) may be implemented in DLLs, the keyword
dllimport is used to specify this attribute. Improper use of the d11limport
keyword will result in a compilation warning.

The calling convention is specified using the following keywords:

Table 12 Calling Convention Keywords

Value Stack CleanupParameter Passing

cdecl |Caller Pushes parameters on the stack (right to left)

stdcall |Callee Pushes parameters on the stack (right to left)
fastcall|Callee Stored in registers, then pushed on stack (right to left)

These calling conventions affect 32-bit builds only. 64-bit builds have a single
calling convention, fastcall.

Example

The trusted function test _calling convs () can use the standard func-
tions like file operations and others by using untrusted functions (OCALLSs).
enclave {

include "sgx stdio stubs.h" //for FILE and other definitions

trusted {
public void test calling convs(void);

}i
untrusted {
[cdecl, dllimport] FILE * fopen
[in,string] const char * filename,
[in,string] const char * mode);

[cdecl, dllimport] int fclose([user check] FILE * stream);

[cdecl, dllimport] size t fwrite(
[in, size=size, count=count] const void * buf-
fer,
size t size,
size t count,
[user check]FILE * stream);

[fastcall] void test fast call([in]void* ptr);

[stdcall] void test std call(void);

-78 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

};
b

Unsupported Syntax:

enclave {

untrusted {
// Compiler warning without [cdecl,dllimport]
size t fwrite([in, size=size, count=count] const void* ptr,
size t size,
size t count,
[user check] FILE * stream);

// Compiler error without [stdcall]
// Redefinition due to different type modifiers
void test std call(void);
bi
}i

Propagating errno in OCALLs

OCALLs may use the propagate errno attribute. When you use this attrib-
ute, the sgx edger8r produces slightly different edge-routines. The errno
variable inside the enclave, which is provided by the trusted Standard C lib-
rary, is overwritten with the value of errno in the untrusted domain before
the OCALL returns. The trusted errno is updated upon OCALL completion
regardless whether the OCALL was successful or not. This does not change the
fundamental behavior of errno. A function that fails must set errno to indic-
ate what went wrong. A function that succeeds, in this case the OCALL, is
allowed to change the value of errno.

Example
enclave {

include "sgx stdio stubs.h" //for FILE and other definitions

trusted {
public void test file io(void);

b
untrusted {
[cdecl, dllimport] FILE * fopen/

[in,string] const char * filename,
[in,string] const char * mode) propagate errno;

-79 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

[cdecl, dllimport] int fclose([user check] FILE * stream)
propagate errno;

[cdecl, dllimport] size t fwrite(
[in, size=size, count=count] const void * buf-
fer,
size t size,
size t count,
[user check]FILE * stream) propagate errno;
b
Y

Importing EDL Libraries

You can implement export and import functions in external trusted libraries,
akin to static libraries in the untrusted domain. To add these functions to an
enclave, use the enclave definition language (EDL) library import mechanism.

Use the EDL keywords from and import to add a library EDLfile to an
enclave EDL file is done..

The from keyword specifies the location of the library EDL file. Relative and
full paths are accepted. Relative paths are relative to the location of the EDL
file. It is recommended to use different names to distinguish the library EDL
file and the enclave EDL file.

The import keyword specifies the functions to import. An asterisk (*) can be
used to import all functions from the library. More than one function can be
imported by writing a list of function names separated by commas.

Syntax

from “1lib filename.edl” import func name, funcZ2 name;

Or

from “1lib filename.edl” import *;

Example

enclave {
from “secure comms.edl” import send email, send sms;
from "../../sys/other secure comms.edl" import *;

bi

A library EDL file may import another EDL file, which in turn, may import
another EDL file, creating a hierarchical structure as shown below:

// enclave.edl

-80 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

enclave {

from “other/file Ll.edl” import *; // Import all functions

b

// Trusted library file Ll.edl

enclave {

from "file L2.edl" import *;

trusted {
public void test int(int wval);

};
b

// Trusted library file L2.edl

enclave {

from "file L3.edl" import *;

trusted {
public void test ptr(int* ptr);

};
b

// Trusted library file L3.edl

enclave {

trusted {
public void test float(float flt);

}i
b

Granting Access to ECALLs
The default behavior is that ECALL functions cannot be called by any of the
untrusted functions.

To enable an ECALL to be directly called by application code as a root ECALL,
the ECALL should be explicitly decorated with the public keyword to be a

-81 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

public ECALL. Without this keyword, the ECALLs will be treated as private
ECALLs, and cannot be directly called as root ECALLs.

Syntax
trusted {

public <function prototype>;

b

An enclave EDL must have one or more public ECALLs, otherwise the Enclave
functions cannot be called at alland sgx edger8r will report an error in this
case.

To grant an OCALL function access to an ECALL function, specify this access
using the a11ow keyword. Both public and private ECALLs can be put into the
allow list.

Syntax
untrusted {

<function prototype> allow (func_ name, func2 name, ..);

b7
Example
enclave {

trusted {
public void clear secret();
public void get secret([out] secret t* secret);
vold set secret([in] secret t* secret);
}i
untrusted {
void replace secret (
[in] secret t* new_ secret,
[out] secret t* old secret)
allow (set secret, clear secret);
i
b

In the above example, the untrusted code is granted dif-
ferent access permission to the ECALLs.

ECALL called asroot ECALL |called from replace secret
clear secret Y Y
get secret Y N
set secret N Y

-82-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Using Switchless Calls

ECALLs and OCALLs can use the transition_using_threads attribute as a post-
fix of the function declaration in the EDL file. When you use this attribute, the
sgx_edger8r produces different edge-routines.

ECALLs and OCALLs with the transition_using_threads attribute use the
Switchless mode of operation to serve the call.

(See: Using Switchless Calls)
Example

enclave {

trusted {
public void ecall empty(void);
public void ecall empty switchless(void) transition using
threads;
i
untrusted {
void ocall empty(void);
void ocall empty switchless(void) transition using threads;
bi
}i

Enclave Configuration File

The enclave configuration file is an XML file containing the user defined para-
meters of an enclave. This XML file is a part of the enclave project. A tool
named sgx_sign uses this file as an input to create the signature and
metadata for the enclave. Here is an example of the configuration file:

<EnclaveConfiguration>

<ProdID>100</ProdID>
<ISVSVN>1</ISVSVN>
<StackMaxSize>0x50000</StackMaxSize>
<HeapMaxSize>0x100000</HeapMaxSize>
<TCSNum>1</TCSNum>
<TCSPolicy>1</TCSPolicy>
<DisableDebug>0</DisableDebug>
<MiscSelect>0</MiscSelect>
<MiscMask>0xFFFFFFFF</MiscMask>
<EnableKSS>1</EnableKSS>
<ISVEXTPRODID7H>1</ISVEXTPRODID7H>
<ISVEXTPRODID_L>2</ISVEXTPRODID_L>
<ISVFAMILYID_H>3</ISVFAMILYID_H>
<ISVFAMILYID_L>4</ISVFAMILYID_L>

</EnclaveConfiguration>

-83 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The table below lists the elements defined in the configuration file. All of them
are optional. Without a configuration file or if an element is not present in the
configuration file, the default value is be used.

Table 13 Enclave Configuration Default Values

Tag Description Default Value
ProdID ISV assigned Product ID. 0
ISVSVN ISV assigned SVN. 0
TCSNum The number of TCS. Must |1
be greater than O.
TCSPolicy TCS management policy. 1
0 -TCS is bound to the
untrusted thread.
1 -TCS is not bound to the
untrusted thread.
StackMaxSize The maximum stack size per [0x40000
thread. Must be 4KB
aligned.
HeapMaxSize The maximum heap size for [0x1000000
the process. Must be 4KB
aligned.
DisableDebug Enclave cannot be 0 - Enclave can be
debugged. debugged
MiscSelect The desired Extended SSA [0
frame feature.
MiscMask The mask bits of MiscSelect [OxFFFFFFFF
to enforce.
EnableKSS Enable the Key Separation |0
and Sharing feature
ISVEXTPRODID H ISV assigned Extended 0
Product ID
(High 8 bytes)
ISVEXTPRODID_ L ISV assigned Extended 0
Product ID (Low 8 bytes)
ISVFAMILYID H ISV assigned Family ID (High |0
8 bytes)
ISVFAMILYID L ISV assigned Family ID (Low [0

-84 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

8 bytes)

MiscSelect and MiscMask are for future functional extension. Currently,
MiscSelect must be 0. Otherwise the corresponding enclave may not be
loaded successfully.

Set EnableKSsS to 1 to enable the Key Separation & Sharing (KSS) feature for
the enclave. ISVEXTPRODID Hand ISVEXTPRODID L are used to set the
ISV assigned Extended Product ID, which is a 16-byte value. ISVFAMILYID H
and ISVFAMILYID L are forthe 16-bytes ISV assigned Family ID. Note that
you need to enable KSS before setting the ISV assigned Extended Product ID
and the ISV assigned Family ID.

To avoid wasting the valuable protected memory resource, you can properly
adjust the StackMaxSize and HeapMaxSize by using the measurement
tool sgx_emmt. See Enclave Memory Measurement Tool for details.

A Visual Studio Add-in named Intel® SGX Configuration is provided for users
to edit their configuration file conveniently. See Using Intel® SGX Con-
figuration Add-in for details.

If there is no enough stack for the enclave, ECALL returns the error code SGX
ERROR_STACK_ OVERRUN. This error code gives the information to enclave
writer that the StackMaxSize may need further adjustment.

Enclave Project Configurations

Depending on the development stage you are at, choose one of the following
project configurations to build an enclave:

« Simulation: The simulation mode works in the same way as the debug
mode except the fact that true hardware is not exercised, instead the
Intel® SGX instructions are simulated in software. Single-step signing is
the default method to sign a simulation enclave.

o Debug: When the Debugconfiguration option is selected for an enclave
project in Microsoft* Visual Studio, the enclave is compiled in the debug
mode and the resulting enclave file will contain debug information and
symbols. Choosing this project configuration also allows the enclave to
be launched in the enclave debug mode. This is facilitated by enabling
the SGX DEBUG_FLAG that is passed as one of the parameters to the
sgx_create enclave function. Single-step method is the default

-85 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

signing method for this project configuration. The signing key used in
this mode cannot be added to the allowlist.

o Prerelease: When you choose the Prerelease configuration option for an
enclave project, Visual Studio will build the enclave in release mode with
compiler optimizations applied. Under this configuration, the enclave is
launched in enclave debug mode. A preprocessor flag EDEBUG is defined
in the preprocessor settings of the Microsoft Visual Studio enclave pro-
ject for this mode. When the EDEBUG preprocessor flag is defined, it
enables the SGX DEBUG FLAG, which in turn, launches the enclave in
the enclave debug mode. Single-step method is also the default signing
method for the Prerelease project configuration. Like in the Debug con-
figuration, the signing key cannot be added to the allowlist either.

» Release: The Release configuration option for a Visual Studio enclave
project compiles the enclave in the release mode and launches the
enclave in the enclave release mode. This is done by disabling the SGX
DEBUG FLAG.SGX DEBUG_FLAG is only enabled when NDEBUG is not
defined or EDEBUG is defined. In the debug configuration NDEBUG is
undefined and hence SGX DEBUG_FLAG is enabled. In the prerelease
configuration NDEBUG and EDEBUG are both defined, which enables
SGX_DEBUG_FLAG. In the release mode, configuration NDEBUG is
defined and hence it disables SGX DEBUG FLAG thereby launching the
enclave in enclave release mode. Two-step method is the default signing
method for the Release configuration. The enclave needs to be signed
with a key that has been added to the allowlist.

For additional information on the different enclave signing methods, see
Enclave Signing Tool and Enclave Signer Usage Examples

Loading and Unloading an Enclave

Enclave source code is built as a dynamic link library. To use an enclave, the
enclave.dll should be loaded into protected memory by calling the APl sgx
create enclave() or sgx create encalve ex().The enclavedIl
must be signed by sgx_sign.exe. When loading an enclave for the first time,
the loader gets a launch token and saves it back to the in/out parameter
token. You can save the launch token into a file, so that when loading an
enclave for the second time, the application can get the launch token from the
file. Providing a valid launch token can enhance the load performance. To

-86 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

unload an enclave, call sgx_destroy enclave () interface with parameter
sgx_enclave id t.

The sample code to load and unload an Enclave is shown below.
#include <stdio.h>
#include <tchar.h>

#include "sgx_urts.h"

#define ENCLAVE FILE T("Enclave.signed.dll")

int main(int argc, char* argvl[])

{

sgx_enclave id t eid;
Sgx _status t ret = SGX SUCCESS;
sgx_launch token t token = {0};

int updated = 0;

// Create the Enclave with above launch token.
ret = sgx create enclave (ENCLAVE FILE, SGX DEBUG_ FLAG, &token,
&updated, &eid, NULL) ;
if (ret != SGX SUCCESS) ({
printf ("App: error %#x, failed to create enclave.\n", ret);
return -1;

// A bunch of Enclave calls (ECALL) will happen here.

// Destroy the enclave when all Enclave calls finished.
1f (SGX SUCCESS != sgx destroy enclave (eid))
return -1;

return O;

Handling Power Events

The protected memory encryption keys that are stored within an Intel SGX-
enabled CPU are destroyed with every power event, including suspend and
hibernation.

-87 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Thus, when a power transition occurs, the enclave memory will be removed
and all enclave data will not be accessible after that. As a result, when the sys-
tem resumes, any subsequent ECALL will fail returning the error code SGX
ERROR ENCLAVE LOST. This specific error code indicates the enclave is lost
due to a power transition.

An Intel SGX application should have the capability to handle any power trans-
ition that might occur while the enclave is loaded in protected memory. To
handle the power event and resume enclave execution with minimum impact,
the application must be prepared to receive the error code SGX ERROR
ENCLAVE LOST when an ECALL fails. When this happens, one and only one
thread from the application must destroy the enclave, sgx destroy
enclave (), and reload it again, sgx create enclave ().Inaddition,to
resume execution from where it was when the enclave was destroyed, the
application should periodically seal and save enclave state information on the
platform and use this information to restore the enclave to its original state
after the enclave is reloaded.

The Power Transition sample code included in the SDK demonstrates this pro-
cedure.

NOTE:

On Windows* 10, an Intel® SGX application must call sgx_destroy
enclave () for the OS to reclaim protected memory or EPC pages from
enclaves that have been removed due to power events. Not destroying an
enclave will result in EPC memory leakage that could prevent subsequent
enclaves from loading. When this happens sgx create enclave () will
return the error code SGX ERROR OUT OF EPC.

Using Switchless Calls

An enclave switch occurs whenever the execution of a CPU jumps in (EENTER)
or out (EEXIT) of an enclave; for example, when making ECALLs/OCALLs.
Enclave switches have a performance overhead. For workloads with short and
frequent calls, the enclave switching overhead can be reduced using Switch-
less Calls. Switchless Calls introduce a new mode of operation to perform calls
from/to Intel® SGX enclaves, using worker threads inside and outside the
enclave.

PERFORMANCE NOTE:

Switchless calls is an advanced feature. It requires additional worker threads
and configuration, performance testing and tuning. It should be used for

-88 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

workloads that require fine performance tuning. Misconfiguration may result in
under utilized worker threads, which consumes CPU time while not serving
any tasks.

Usage

To use Switchless calls, the EDL attribute transition using threads
should be postfixed to the ECALLs and OCALLs where Switchless Calls are
required. An EDL file can contain ECALLs/OCALLs with or without this attribute.

The application code must create an enclave using sgx create enclave
ex, set the Switchless flag in an extended options vector, and provide a switch-
less configuration structure .

On enclave creation, the uRTS creates several trusted and untrusted worker
threads according to the Switchless configuration provided via initialization
structures and allocates the required data structures for Switchless Calls. Trus-
ted worker threads use regular enclave TCSes. The TCSNum defined in the
enclave XML configuration should be updated accordingly when building an
enclave with switchless trusted worker threads.

NOTE:

You should not use Switchless Calls with TCS binding policy, namely
TCSPolicy 0. Using this policy disables concurrent execution of E/OCALLS.

When a developer builds an enclave with the TCS binding policy, they expect
the TLS data of the trusted thread to be preserved across calls to the same
trusted function. However, this behavior cannot be provided if the enclave
uses switchless calls for two main reasons:

o Worker threads handle different switchless ECALLs, despite the TCS
binding policy. As a result, the TLS area assigned to any worker thread
will be re-used by all the ECALL functions that the worker thread ser-
vices.

« When a switchless call request times out, it is serviced as a regular ECALL
using a TCS reserved for regular ECALLs. Thus, the switchless ECALL will
re-use the TLS area of a regular ECALL.

Example usage of sgx create enclave ex:

sgx_launch token t token = {0};

sgx status t ret = SGX ERROR UNEXPECTED;

-89 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

int updated = 0;

sgx_uswitchless config t us config = { 0, 1, 1,
100000, 100000, { O } 1}

void* enclave ex p[32] = { 0 };

enclave ex p[SGX CREATE ENCLAVE EX SWITCHLESS
BIT IDX] = &us config;

sgx_enclave id t eid;
const char* fname = "enclave.signed.so";

ret = sgx create enclave ex (fname,

SGX DEBUG FLAG, &token, &updated, &eid,
NULL,

SGX CREATE ENCLAVE EX SWITCHLESS,
enclave ex p);

High Level Overview

Intel® Software Guard Extensions Developer Reference for Windows* OS

Untrusted

Trusted
Application
Thread Enclave
—
Worker Thread Call Table
ECall Tasks —p Funca
_P i Function I 2 index
Pool —p FuncB
s Enclave
Application - ’ Worker Thread
Thread

- 1
1

Function ID III

Parameters '|I

| Return Value \

||| Status I'.

II II

Worker Thread Enclave Thread
OCall Tasks
Pool
Enclave Thread
Worker Thread

Figure 12 Switchless Calls Architecture

Major Highlights:

o Two task pools, for ECALL and OCALL-tasks respectively.

« Several worker threads servicing ECALLs (running inside the enclave)
and OCALLs (running outside the enclave) requests.

« Task objects describing an ECALL/OCALL request including all the
required parameters.

Task Pool

The Task Pool contains task requests pending to be executed. It uses task
objects to transfer data between trusted and untrusted sides without invoking

-91 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

EENTER/EEXIT.

The application defines at runtime the task pool size, namely the number of
concurrent task requests.

Worker Threads

Worker threads wait for one or more pending tasks in the relevant task pool
and start executing the tasks until the task pool gets empty.

The number of working threads is defined by the application at runtime and
should be at least two to support nested Switchless Calls.

The depth of nested Switchless Calls (Switchless OCALL — Switchless
ECALL— ... — Switchless OCALL) cannot be greater than the number of work-
ing threads.

Fallback to regular ECALLs/OCALLs

When the Task Pool is full, or when all Worker Threads are busy, a Switchless
Call falls back to a regular ECALL/OCALL.

Nested Switchless ECALL

Switchless Calls do not support private nested ECALLs. Nested ECALLs using
the transition_using_threads keywords must be public as well. Allowing a nes-
ted switchless ECALL is not sufficient. A non-public nested ECALL returns
SGX_ERROR_ECALL_NOT_ALLOWED to the application.

Switchless Calls Usage Configuration Tips

The Switchless Calls operation mode can improve performance of some work-
loads. However, this mode is complex and may cause a slowdown or/and a
resource overloading by busy-wait worker threads.

It is highly recommended to introduce performance measurements and tun-
ing to the development cycle when you use switchless calls. A simple example
is shown in the Switchless sample code.

Switchless Calls Operation Mode Callbacks

The application can register callbacks for worker thread events. Worker
threads can send four types of events:

o worker threads starts

o worker thread exits

o worker thread enters idle state (sleep)

o worker thread misses switchless call (fallback)

-92 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Worker thread events contain statistics of processed and missed (fallback)
switchless calls. The statistics is common for all worker threads of the same
type (trusted/untrusted).

Application may use the Switchless mode callbacks (sgx uswitchless
worker callback t)to gather additional performance data. Note that the
worker thread MISS event (SGX_USWITCHLESS_WORKER_EVENT_MISS) may
happen and cause additional overhead.

Applications that use Switchless Calls may find it useful to detect the HW cap-
abilities of the CPU: the number of cores and threads to configure the switch-
less configuration structure.

The worker thread START event (SGX_USWITCHLESS_WORKER_EVENT _
START) can be used to set thread affinity .

See the example of the worker thread exit callback below. For the callback
prototype, referto sgx uswitchless worker callback t.

// global processed/missed calls counters

// 0,1 - untrusted; 2,3 - trusted

uint32 t g stats[4] = { 0 };

/**

* callback to log switchless calls stats

*/

void exit callback (
sgx_uswitchless worker type t type,

sgx_uswitchless worker event t event,
const sgx uswitchless worker stats t* stats)

// last thread exiting will update the latest results
g _stats[type*2] = stats->processed;
g _stats[type*2+1] = stats->missed;

Enabling Enclave Code Confidentiality

Intel® Software Guard Extensions Protected Code Loader (Intel® SGX PCL) is
intended to protect Intellectual Property (IP) within the code for Intel® SGX
enclave applications running on the Windows* OS.

-03 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Problem: Intel® SGX provides integrity of code and confidentiality and integ-
rity of data at run-time. However, it does NOT provide confidentiality of code
offline as a binary file on disk. Adversaries can reverse engineer the binary
enclave DLL.

Solution: Encrypt the enclave DLL at build time and decrypt it at enclave
load time.

Intel® SGX PCL Architectural Overview
Build Time:

Figure below shows the Intel® SGX PCL build flow.

Original ISV Enclave Encrypted ISV Enclave
PE Header PE Header
IP sections IP sections
Non IP sections = Non IP sections
Encrypt
IP sections IP sections
Non IP sections Non IP sections
PCL PCL

Figure 13 Intel®° SGX PCL Build Flow
1. The Intel® SGX PCL library is linked into the ISV Intel® SGX IP Enclave.

-94 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

2. Before the ISV IP Enclave is signed, the linked DLL is modified so that PE sec-
tions containing IP are encrypted. The green key designates the symmetric
encryption/decryption key.

Notes:

« The Intel® SGX PCL encryption tool treats all sections as IP, except for sec-
tions that are required by either the signing tool, the Intel® SGX PSW Enclave
Loader, or the Intel® SGX PCL decryption flow. For a detailed list, see ‘Regions
that are Not Encrypted’ below.

« Encryption/decryption key management is the ISV responsibility, which is
out of scope for this document.

Run Time
ISV Sealing Enclave

To load an IP Enclave, the ISV must first transport a decryption AES key to the
user local machine, seal it on the user local machine, and use it as an input for
the Intel® SGX PCL. For this, the ISV must devise the second enclave, the ‘Seal-
ing Enclave’. The figure below shows this flow:

Outside of Platform ! Platform
(1) —= (2) 0—= (1) = (2) 0—=
(1) RemoteEAttestation ISV (3) Seal
ISV Server , —— | Sealed Key Blob

Sealing Enclave

Figure 14 ISV Sealing Enclave Flow
The ISV Sealing Enclave performs the following operation:

1. Uses the existing standard Intel® SGX SDK Remote Attestation to generate
a secure session with the ISV server. (The light blue key illustrates session
keys)

2. Receives the decryption key from the ISV server in a secured way.

See details at “Intel® SGX PCL Decryption key provisioning" below. (The green
key illustrates a decryption key)

3. Uses the existing standard Intel® SGX SDK sealing mechanism to generate
the sealed key and store it locally.

-905 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Notes:

« For the Sealing Enclave and the IP Enclave to be able to seal and unseal the
decryption key, both enclaves must be signed with the same Intel® SGX ISV
signing key and have the same ProdID.

« Once the sealed key is generated, it can be stored in nonvolatile memory on
the platform. This decreases the number of remote attestations required to
run.

ISV IP Enclave

Figure below shows the enclave loading flow:

0—x
Sealed keyblob | —» | EncryptedISV Decrypt Functional ISV
IP Enclave IP Enclave

Figure 15 ISV IP Enclave Loading Flow
The ISV IP Enclave performs the following operations:
1. Receives the Sealed Key Blob as input.
2. Unseals the blob to receive the decryption key.
3. Uses the decryption key to decrypt the IP content.
Comparison with Standard Flow

Table below summarizes the differences between the IP Enclave load flows
with and without the Intel® SGX PCL.

Table 14 Comparison of flows with and without Intel® SGX PCL:

Step [Standard Flow Intel® SGX PCL Flow
(No Intel® SGX PCL)
Build o Link:ISV libraries o Link:ISV libraries, objs, and sgx_
Time and objs are linked pcllib are linked to IPEnclave.dll
to Enclave.dll o Encrypt IPEnclave.dll to IPEn-

-06 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

o Sign: Enclavedllis

signed to generate
Enclave.signed.dll

clave.encdll
Sign: IPEnclave.enc.dll is signed to
generate IPEnclave.signed.dll

Enclave
Load

. Enclave application

loads the enclave
using sgx_create_
enclave.

. sgx_create_enclave

performs an implicit
ecall.

. The implicit ecall ini-

tiates an enclave
runtime initialization
flow.

. Enclave application gets the sealed

decryption key.

. Enclave application loads the enclave

using sgx_create_enclave_ex, provid-
ing the sealed decryption key

. Sgx_create_enclave_ex performs an

implicit ecall.

. The Implicit ecall invokes the Intel®

SGX PCL flow.

. Intel® SGX PCL unseals the sealed

blob to get the decryption key.

. Intel® SGX PCL decrypts the encryp-

ted IP sections and returns the
enclave to its functional state.

. The process continues with the

enclave runtime initialization flow.

Note: Intel® SGX PCL does not support the Simulation mode.

Security Considerations

Not Encrypted Regions

The ISV must make sure the regions described in the table below do not con-
tain the ISV IP. The encryption tool will NOT encrypt these regions.

Table 15 Not Encrypted Regions

Region

Description

Content outside the PE section

Encryption tool does not encrypt con-
tent that is outside a section

Section ".reloc"

Intel® SGX PCL uses ".reloc" section to apply
relocations to its code and data

Sections "niptx", "nipdt", "nipdt1", "nipdt2"
and "pcltbl"

These sections include code and data used dur
ing the Intel® SGX PCL flow

Sections ".debug
"sgxvers",

, "sgxmeta", "sgxdata",

.tls" and ".edata"

These sections are required by either the Intel®
SGX SDK signing tool or the Intel® SGX PSW

-97 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

||enclave loader

Export directory, export directory strings of |[These regions are required by either the Intel®
symbols, export directory functions, export ||SGX SDK signing tool or the Intel® SGX PSW
directory names, export directory ordinals, |lenclave loader

TLS directory, thread data, debug dir-
ectories, debug data

Writable Sections

The Intel® SGX PCL encryption tool sets the Writable bit in the section flags of
the encrypted PE sections . As a result, all pages that belong to such PE sec-
tions, including portions of the enclave code and read-only data, are writable
at enclave runtime.

Intel® SGX PCL Cryptographic Standards
At build time, the encryption tool uses:

« SHA256 to compute the hash of the symmetric encryption/decryption key
and embeds it into the IP enclave binary.

« AES-GCM-128 to encrypt-in-place the IP sections.
« RDRAND to generate the per-section random IVs.
At run time the Intel® SGX PCL uses:

« SHA256 to compute the hash of the unsealed symmetric encryp-
tion/decryption key. The Intel® SGX PCL verifies the integrity of the symmetric
encryption/decryption key by comparing its hash with the one embedded in
the IP enclave binary at build time.

« AES-GCM-128 to decrypt-in-place the IP sections.

Intel® SGX PCL Crypto Code Snippets from OpenSSL

Intel® SGX PCL library includes code snippets from OpenSSL1.1.1 (with slight
modifications to enable running with Intel® SGX PCL). Those snippets are now
part of the ISV's IP enclave’s TCB. If in the future, an identified vulnerability in
OpenSSL1.1.1 requires modification to a file from which these snippets ori-
ginate, ISV must update the snippets accordingly.

-08 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Integrating Intel® SGX PCL with an existing Intel® SGX solution

Integrating an ISV enclave with the Intel® SGX PCL requires the ISV to apply
modifications to the ISV solution:

1. Apply modifications to the IP enclave.
2. Apply modifications to the enclave application that loads the enclave(s).
3. Create an additional enclave, the Sealing Enclave.

Note: Steps above are already applied to SampleEnclavePCL. See
README.md for instructions on building and running the sample code.

Disclaimer: This chapter presents a pseudo code, which is not secure, not com-
plete, and it will not compile. For the complete code, see SampleEnclavePCL.

Modifications to IP Enclave

» Disable incremental linking if enabled.

» Disable whole program optimization if enabled.

» Disable interprocedural optimization "Multi File" if enabled.

« Disable Control Flow Guard if enabled

o Add sgx_pcllib to the list of static libraries that the enclave is linked to.
o Change the build flow so that the build time encryption tool sgx_enc_

ip.exe is run before the enclave is signed
sgx_enc ip.exe -k key.bin -i IPEnclave.dll -o IPEn-
clave.enc.dll

« Change the signing command to sign the encrypted enclave IPEn-
clave.encdll

« No modifications are required for the IP Enclave source code.

Modifications to Enclave Application

Required steps:

1. Get the sealed blob:
« If afile containing the sealed blob exists (for example, it was gen-
erated during the previous runs), read it.

« If the file does not exist:
o Create the Sealing Enclave.
o Use the Sealing Enclave to provision the decryption key to

the platform and seal it.

o Save the sealed key to a file on the platform for future use.

-99 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

2. Load the encrypted enclave using
sgx_create enclave ex and provide it with the sealed blob.

Pseudo code:

#define SEALED KEY FILE NAME "SealedKey.bin"

#define IP_ENCLAVE FILE NAME "IPEnclave.signed.dll"

#define SEALING ENCLAVE FILE NAME "SealingEnclave.signed.dll"
uint8 t* sealed key;

size t sealed key size;

if (file exists (SEALED KEY FILE NAME))

{

// Sealed key file exists, read it into buffer:

ReadFromFile (SEALED KEY FILE NAME, sealed key);

else

/ *
* Sealed key file does not exist. Create it:
* 1. Create the Sealing Enclave
* 2. Use the Sealing Enclave to provision the decryption key
* onto the platform and seal it.
* 3. Save the sealed key to a file for future uses
*/
// 1. create the sealing enclave
sgx create enclave (
SEALING_ENCLAVE FILE NAME,
debug,
&token,
&updated,
&seal enclave id,
NULL) ;
/ *
* 2. Use the Sealing Enclave to provision the decryption key

* onto the platform and seal it:

-100 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

*/

ecall get sealed key size(seal enclave id, &sealed key size);
sealed key = (uint8 t*)malloc(sealed key size);

ecall get sealed key(seal enclave id, sealed key, sealed key size);
// 3. Save the sealed key to a file for future uses

WriteToFile (SEALED KEY FILE NAME, sealed key);

}
// Load the encrypted enclave, providing the sealed key:
const void* ex features[32] = {};
ex features[SGX CREATE ENCLAVE EX PCL BIT IDX] = sealed key;
sgx_create enclave ex(

IP ENCLAVE FILE NAME,

debug,

&token,

&updated,

ip_enclave id,

NULL,

ex features,

SGX_CREATE_ENCLAVE_EX_PCL);
Sealing Enclave
Intel® SGX PCL Decryption key provisioning

This section describes methods for creating and using the ISV Sealing Enclave.
The ISV Sealing enclave provisions the decryption key to the user local
machine and seals it.

To securely transport the decryption AES key to the user local machine, the
ISV Sealing enclave needs to attest to the ISV server, generate a secure ses-
sion, and use it to provision the decryption key.

Sending the Intel® SGX PCL Decryption Key from ISV Server to Local Plat-
form

The Remote Attestation sample in this document illustrates and describes in
details how to initiate a remote attestation session with an ISV server.

Remote attestation enables the server and the client to share secret keys.
Such keys can be used to generate a secure session (for example, using TLS)
between the ISV server and the Sealing enclave. The secure session can then

-101 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

be used to securely provision the decryption key.
Sealing the Intel® SGX PCL Decryption Key

The sealing sample code in this document illustrates how to seal a secret. By
default, the Intel® SGX SDK seals the secret using MRSIGNER.

Interaction with the Enclave Application

In the pseudo code above, the ISV Sealing Enclave provides the Enclave
Application with the sealed decryption key by implementing the enclave calls
ecall_get_sealed_key size and ecall_get_sealed_key. This is not an archi-
tectural requirement and ISVs can use their own design.

-102 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Intel® Software Guard Extensions SDK Sample Code
After installing the Intel® Software Guard Extensions SDK, you can find the
sample code at [Intel SGX SDK Install Path]lsrc.

You can open the sample projects in Microsoft* Visual Studio* 2019.

o The SampleEnclave project shows how to create an enclave.

o The PowerTransition project shows how to handle the power transition
for an Intel SGX project.

o The Cxx115GXDemo project shows how to use C++11 library inside the
enclave.

o The LocalAttestation project shows how to use the Intel Elliptical Curve
Diffie-Hellman key exchange library to establish a trusted channel
between two enclaves running on the same platform.

o The RemoteAttestation project shows how to use the Intel remote attest-
ation and key exchange library in the remote attestation process.

o The SealedData project demonstrates how to use the APIs to encrypt
and integrity-protect enclave secrets to store them on disk.

o The Sgx2Enclave project shows how to create an Intel® SGX2 enclave
and use the sgx tedmm library.

Sample Enclave

The project SampleEnclave shows you how to write an enclave from scratch.
This topic demonstrates the following basic aspects of enclave features:

« Initialize and destroy an enclave
o Create ECALLs or OCALLs
o Call trusted libraries inside the enclave

The code is shipped with the Intel® Software Guard Extensions SDK in
[Intel SGX SDK Install Path]src\SampleEnclave.Youcanopen
the project in Microsoft* Visual Studio 2019.

NOTE:
If the sample project is located in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

-103 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Configure and Enable Intel® SGX

Some OEM systems support configuration and enabling of Intel® SGX in the
BIOS via an SW Control Interface. The Intel® SGX PSW exposes an API that ALL
applications should call prior to creating an application. The APl sgx
enable device configures and enables the Intel® SGX device if the plat-
form has NOT been previously enabled. If the BIOS configures Intel® SGX as
result of the call, then a reboot is required for the BIOS configuration to take
affect (Intel® SGX will not be available for use until after the reboot). Please,
refer to the query sgx status function in the Sample Application for use
of this API. See sgx_enable_device for additional details.

Initialize an Enclave

Before establishing any trusted transaction between an application and an
enclave, the enclave itself needs to be correctly created and initialized by call-
ing sgx_create_enclave provided by the uRTS library.

Saving and Retrieving the Launch Token

A launch token needs to be passed to sgx_create_enclave for enclave ini-
tialization. If the launch token was saved in a previous transaction, it can be
retrieved and used directly. Otherwise, you can provide an all-O buffer. sgx_
create_enclave will attempt to create a valid launch token if the input is not
valid. After the enclave is correctly created and initialized, you may need to
save the token if it has been updated. The fourth parameter of sgx_create_
enclave indicates whether or not an update has been performed.

The launch token should be saved in a per-user directory or a registry entry in
case it would be used in a multi-user environment.

For example, the token can be saved in either of the following locations:

o« CSIDL LOCAL APPDATA -the file system directory where application-
specific data is stored

« HKEY CURRENT USER -the registry entry that contains the profile for
the user who is currently logged on to the computer.

See http://msdn.microsoft.com/en-us/library/windows/desktop/bb762494
(v=vs.85).aspx for details about CSIDL. LOCAL APPDAT.

ECALL/OCALL Functions

This sample demonstrates basic EDL syntax used by ECALL/OCALL functions,
as well as using trusted libraries inside the enclave. You may see Enclave

-104 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Definition Language Syntax for syntax details and Trusted Libraries for C/C++
support.

Destroy an Enclave

To release the enclave memory, you need to invoke sgx_destroy_enclave
provided by the sgx urts library. It will recycle the EPC memory and untrus-
ted resources used by that enclave instance.

Power Transition

If a power transition occurs, the enclave memory will be removed and all the
enclave data will be inaccessible. Consequently, when the system is resumed,
each of the in-process ECALLS and the subsequent ECALLs will fail with the
error code SGX ERROR ENCLAVE LOST which indicates the enclave is lost
due to a power transition.

An Intel® Software Guard Extensions project should have the capability to
handle the power transition which might impact its behavior. The project
named PowerTransition describes one method of developing Intel® Software
Guard Extensions projects that handle power transitions. See ECALL-Error-
Code Based Retry for more info.

PowerTransition demonstrates the following scenario: an enclave instance is
created and initialized by one main thread and shared with three other child
threads; The three child threads repeatedly ECALL into the enclave, manip-
ulate secret data within the enclave and backup the corresponding encrypted
data outside the enclave; After all the child threads finish, the main thread des-
troys the enclave and frees the associated system resources. If a power trans-
ition happens, one and only one thread will reload the enclave and restore the
secret data inside the enclave with the encrypted data that was saved outside
and then continues the execution.

The PowerTransition sample code is shipped with the Intel® Software Guard
Extensions SDK. You can find the source code inthe [Intel SGX SDK
Install Path]src\PowerTransition directory. The sample code can
be built with the Microsoft* Visual Studio 2019 using the corresponding pro-
ject in the Microsoft* Visual Studio 2019.

NOTE:
If the sample project locates in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

-105 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

ECALL-Error-Code Based Retry

After a power transition, an Intel® SGX error code SGX_ERROR_ENCLAVE_
LOST will be returned for the current ECALL. To handle the power transition
and continue the project without impact, you need to destroy the invalid
enclave to free resources first and then retry with a newly created and ini-
tialized enclave instance, as depicted in the following figure.

Sgart

ECALL to enclave | Create and initialize

Continue..

Figure 16 Power Transition Handling Flow Chart

ECALLs in Demonstration

PowerTransition demonstrates handling the power transition in two types of
ECALLs:

1. Initialization ECALL after enclave creation.
2. Normal ECALL to manipulate secrets within the enclave.

Initialization ECALL after Enclave Creation

PowerTransition illustrates one initialization ECALL after enclave creation
which is shown in the following figure:

-106 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_create_enclavel.) (=

EXIT with error

message
A

sgx_destroy_enclavel..)
A

Store the launch
token

Ecall to initialize the
enclave global varible

Figure 17 Enclave Initialization ECall after Enclave Creation Flow Chart

sgx_create_enclave is a key API provided by the uRTS library for enclave cre-
ation. For sgx_create_enclave, a mechanism of power transition handling is
already implemented in the uRTS library. Therefore, it is unnecessary to manu-
ally handle power transition for this API.

NOTE:
To concentrate on handling a power transition, PowerTransition assumes the
enclave file and the launch token are located in the same directory as the
application. See Sample Enclave for how to store the launch token properly.

Normal ECALL to Process Secrets within the Enclave

This is the most common ECALL type into an enclave. PowerTransition demon-
strates the power transition handling for this type of ECALL in a child thread
after the enclave creation and initialization by the main thread, as depicted in
the figure below. Since the enclave instance is shared by the child threads, it is
required to make sure one and only one child thread to re-creates and re-ini-
tializes the enclave instance after the power transition and the others utilize
the re-created enclave instance directly. PowerTransition confirms this point
by checking whether the Enclave ID is updated.

-107 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

ECALL to enclave with
the backup eid [Release Lock 1—|
+

Update global_eid
with new backup eid

T

Create and initialize
enclave to get new

hackup eid

Figure 18 Regular ECALL Flow Chart

NOTE:
During the ECALL process, it is recommended to back up the confidential data
as cipher text outside the enclave frequently. Then we can use the backup
data to restore the enclave to reduce the power transition impacts.

C++11 Demo

The project Cxx115GXDemo is designed to illustrate some of the C++11 lib-
rary features supported inside the enclave provided by the Intel® SGX SDK
and the compiler features supported by the Visual Studio 2019 Compiler.
This sample provides practical use cases for each of the C++11 features cur-
rently supported.

The code is shipped with the Intel SGX SDK and is located in [Intel SGX
SDK Install Path]src\Cxx11SGXDemo.Open the projectin Microsoft*
Visual Studio 2019.

NOTE:

-108 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

If the sample project is located in a system directory, administrator privileges
are required to open the project. You can copy the project folder to your dir-
ectory if an administrator permission cannot be granted.

The sample covers a subset of C++11 features inside the enclave as listed in
the table below.

Table 16 Overview of C++11 features covered

Headers #include <typeinfo>
#include <functional>
#include <algorithm>
#include <unordered_set>
#include <unordered_map>
#include <initializer_list>
#include <tuple>

#include <memory>
#include <atomic>
#include <mutex>

#include <condition_variable>

#include <map>
Classes std:function, std::all_of, std:any_of, std:none_of,

stdzinitializer_list, std:unordered_set,
std::unordered_map, std:unordered _multiset,
std:unordered_multimap, std:tuple,
stdzshared_ptr, std:unique_ptr, std:auto std:mutex,

std::condition_variable

Compiler fea- |lambda expressions, auto, decltype,
tures

strongly typed enum classes,
range-based for statements,
static_assert, new virtual function controls,

delegating constructors, variadic templates,

-109 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

substitution failure is not an error (SFINAE),

rvalue references and move semantics, nullptr type

Attestation

In the Intel® Software Guard Extensions architecture, attestation refers to the
process of demonstrating that a specific enclave was established on the plat-
form. The Intel® SGX Architecture provides two attestation mechanisms:

« One creates an authenticated assertion between two enclaves running
on the same platform referred to as local attestation.

« The second mechanism extends local attestation to provide assertions
to 3rd parties outside the platform referred to as remote attestation.
The remote attestation process leverages a quoting service.

The Intel® Software Guard Extensions SDK provides APIs used by applications
to implement the attestation process.

Local Attestation

Local attestation refers to two enclaves on the same platform authenticating
to each other using the Intel SGX REPORT mechanism before exchanging
information. In an Intel® SGX application, multiple enclaves might collaborate
to perform certain functions. After the two enclaves verify the counterpart is
trustworthy, they can exchange information on a protected channel, which typ-
ically provides confidentiality, integrity and replay protection. The local attest-
ation and protected channel establishment uses the REPORT based Diffie-
Hellman Key Exchange* protocol.

You can find a sample solution shipped with the Intel® Software Guard Exten-
sionsSDKat [Intel SGX SDK Install Path]src\LocalAt-
testation directory. To compile, you only need to open the project with
Microsoft* Visual Studio 2019.

NOTE:
If the sample project locates in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

The sample code shows an example implementation of local attestation,
including protected channel establishment and secret message exchange
using enclave to enclave function call as an example.

-110 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Diffie-Hellman Key Exchange Library and Local Attestation Flow

The local attestation sample in the SDK uses the Diffie-Hellman (DH) key
exchange library to establish a protected channel between two enclaves. The
DH key exchange APlIs are described in sgx_dh.h. The key exchange library
is part of the Intel® SGX application SDK trusted libraries. It is statically linked
with the enclave code and exposes APIs for the enclave code to generate and
process local key exchange protocol messages. The library is combined with
other libraries and is built into the final library called sgx_tservice.lib that is
part of the SDK release.

“111 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Intel DH Intel DH
Key 1SW Untrusted Untrusted 15w Key
Exchange Enclavel Codel Code2 EnclaveZ2 Exchange
1 1
1 | | : :
sgx_dh_init session(IN ! !
ITIATOR, adh=session) H '
e ! :
2 session regquest ocall(&a&ret,
src_enclave_id,dest enclavwve
id,&dh msgl, &asession id)
: +
! H
3 session request (dest_encl
! ave_ id,&status, src_enclawv
H e id,dh msgl, session_id}
: ———>y
E :' 4 sgx dh init session(RE
! H SPONDER, &dh session)
: : | |
E :. = sgx_ dh responder gen msgl
' ' (dh msgl,&dh session)
' 5 ' - -
dh msgl, ase dh session
7 - mm———— - = e e e Ao]
=gx_dh initiator proc msgl i i
(&dh msgl, &adh msgZ,dh sess H H
iom} i H
| ! '
=3 exchange report ocall(&aret, sc
c _enclave_ id,dest enclawve_id,
&dh msgZ,&dh msg3,
session_ id)
: e
i o exchange report (dest_encl
! ave_ id,&status, src_enclawv
H e _id,dh m=sg2,dh msg3,
i session id)
| —>1
E .: 10 sgx _dh responder proc msg2
! ! (dh m=gZ,dh msg3, adh_sessi
H | on, &dh_aek,
; i sinitiator identity)
i 11 i -
| | —_—
| dh m=sg3]
' i
12 S FTmmmm e i
1 I
sgx_dh initiator proc msg3/(i -
&dh m=sg3, &se_dh session, &dh ! H
aek, aresponder identity) \ 13
-
Messages protected by AEK
]]

Figure 19 Local Attestation Flow with the DH Key Exchange Library

The figure above represents the usage of DH key exchange library. A local
attestation flow consists of the following steps:

In the figure, ISV Enclave 1 is the initiator enclave and ISV Enclave 2 is the
responder enclave.

-112 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

10.

11.

12.

13.

. Initiator enclave calls the Intel ECDH key exchange library to initiate the

session with the initiator role.

. The initiator enclave does an OCALL into the untrusted code requesting

the Diffie-Hellman Message 1 and session id.

The untrusted code does an ECALL into the responder enclave.
Responder enclave in turn calls the ECDH key exchange library to initiate
the session with the responder role.

. Responder enclave calls the key exchange library to generate the DH

Message 1 ga || TARGETINEFO.

DH Message 1 is sent back from the responder enclave to the initiator
enclave through an ECALL return to the untrusted code followed by an
OCALL return into the initiator enclave.

. Initiator enclave processes the Message 1 using the key exchange library

APl and generates the DH Message 2 gb | | [Report Enclave 1 (h
(ga [gb))]SMK.

DH Message 2 is sent to the untrusted side through an OCALL.

The untrusted code does an ECALL into the responder enclave giving it
the DH Message 2 and requesting the DH Message 3.

Responder enclave calls the key exchange library API to process the DH
Message 2 and generates the DH Message 3 [ReportEnclave?2 (h(gb
|| ga)) || Optional Payload]SMK.

DH Message 3 is sent back from the responder enclave to the initiator
enclave through an ECALL return to the untrusted code followed by an
OCALL return into the initiator enclave.

Initiator enclave uses the key exchange library to process the DH Mes-
sage 3 and establish the session.

Messages exchanged between the enclaves are protected by the AEK.

Diffie-Hellman Key Exchange Library and Local Attestation 2.0

the Diffie-Hellman (DH) key exchange library also exposes DH key exchange
2.0 APIs for the enclave code to generate and process local key exchange pro-
tocol messages. To use DH key exchange 2.0 APIs which are also described in

SgxX_

dh.h,add SGX USE LAv2 INITIATORtOPreprocessor Defin-

itions option.

A local attestation 2.0 flow consists of the steps in previous section except 7
and 10:

-113 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

10.

11.

12.

13.

. ISV initiator enclave calls the Intel ECDH key exchange library to initiate

the session with the initiator role.

. The initiator enclave does an OCALL into the untrusted code requesting

the Diffie-Hellman Message 1 and session id.

The untrusted code does an ECALL into the responder enclave .

The responder enclave in turn calls the ECDH key exchange library to ini-
tiate the session with the responder role.

. The responder enclave calls the key exchange library to generate DH

Message 1 ga || TARGETINFO.

DH Message 1 is sent back from the responder enclave to the initiator
enclave through an ECALL return to the untrusted code followed by an
OCALL return into the initiator enclave.

. The initiator enclave processes the Message 1 using the key exchange

library 2.0 APl and generates the DH Message 2 gb | | [Report

Enclave 1 (h(proto spec || gb))]SMK and report_data
replaced with proto_specin which proto_specis 'SGX LA' || Ver
|| Rev || TARGET SPEC || padding.

DH Message 2 is sent to the untrusted side through an OCALL.

The untrusted code does an ECALL into the responder enclave giving it
the DH Message 2 and requesting the DH Message 3.

The responder enclave calls the key exchange library 2.0 API to process
the DH Message 2 and generates the DH Message 3 [Report
Enclave2 (h(ga || proto spec)) || Optional Payload ||
ga] SMK.

DH Message 3 is sent back from the responder enclave to initiator
enclave through an ECALL return to the untrusted code followed by an
OCALL return into the initiator enclave.

The initiator enclave uses the key exchange library to process the DH
Message 3 and establish the session.

Messages exchanged between the enclaves are protected by the AEK.

Protected Channel Establishment

The following figure illustrates the interaction between two enclaves, namely
the source enclave and the destination enclave, to establish a session. The
application initiates a session between the source enclave and the destination
enclave by doing an ECALL into the source enclave, passing in the enclave id of
the destination enclave. Upon receiving the enclave id of the destination
enclave, the source enclave does an OCALL into the core untrusted code

-114 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

which then does an ECALL into the destination enclave to exchange the mes-
sages required to establish a session using ECDH Key Exchange* protocol.

T

el FUnction call

s FUINCEION TEEUTN
ore untrusted Loae
1. test_create session)
) 4. sessign_request()
3. session_request o 7. exchange report_ogdll{) 8. excharibg,_reportl)

9, exchange repoR() return
6. sessip_request ocall() retu EeLep

5. session_rdguest ragurn

Destination Enclave

e

Source Enclave

10Jexchinge report_ocall) return

|

2. create_session1l. create session return

ore Irustea Loae ‘ !ore |fUS!8! !0!8

Figure 20 Secure Channel Establishment Flow with the DH Key Exchange
Library

-115 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Secret Message Exchange and Enclave to Enclave Call

The following figure illustrates the message exchange between two enclaves.
After the establishment of the protected channel, session keys are used to
encrypt the payload in the message(s) being exchanged between the source
and destination enclaves. The sample code implements interfaces to encrypt
the payload of the message. The sample code also shows the implementation
of an enclave calling a function from another enclave. Call type, target function
ID, total input parameter length and input parameters are encapsulated in the
payload of the secret message sent from the caller (source) Enclave and the
callee (destination) enclave. As one enclave cannot access memory of another
enclave, all input and output parameters, including data indirectly referenced
by a parameter needs to be marshaled across the two enclaves. The sample
code uses Intel® SGX SDK trusted cryptographic library to encrypt the pay-
load of the message. Through such encryption, message exchange is just the
secret and in case of the enclave to enclave call is the marshaled destination
enclave’s function id, total parameter length and all the parameters. The des-
tination enclave decrypts the payload and calls the appropriate function. The
results of the function call are encrypted using the session keys and sent back
to the source enclave.

-116 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

!!EHI!HIEH \ el FUnction call

s FUINCEION TEEUTN
ore untrustea Lode
test enclave to enclave
/Et - message_exchange() send_reqyfest() genelgte Yesponse()
Source Enclave Destination Enclave

send request receive response()

Figure 21 Secret Message Exchange Flow with the DH Key Exchange Library

Remote Attestation

Generally speaking, Remote Attestation is the concept of a HW entity or of a
combination of HW and SW gaining the trust of a remote provider or producer
of some sort. With Intel® SGX, Remote Attestation software includes the app's

-117 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

enclave and the Intel-provided Quoting Enclave (QE) and Provisioning Enclave
(PVE). The attestation HW is the Intel® SGX enabled CPU.

Remote Attestation alone is not enough for the remote party to be able to
securely deliver their service (secrets or assets). Securely delivering services
also requires a secure communication session. Remote Attestation is used dur-
ing the establishment of such a session. This is analogous to how the familiar
SSL handshake includes both authentication and session establishment.

The Intel® Software Guard Extensions SDK includes sample code showing:

« How an application enclave can attest to a remote party.
« How an application enclave and the remote party can establish a secure
session.

The SDK includes a remote session establishment or key exchange (KE) lib-
raries that can be used to greatly simplify these processes.

You can find the sample code for remote attestation in the directory [Intel
SGX SDK Install Path]src\RemoteAttestation.

NOTE:
To run the sample code in the hardware mode, you need to access to Internet.

NOTE:

The Intel® Attestation Service has been activated. A sandbox version of Intel
Attestation Service is supported to enable development in an ISV's applic-
ation server for Intel® SGX attestation. Refer to the Intel® Attestation

Service documentation for information on how to establish the com-
munication between the ISV Application Server and Intel Attestation Server.

NOTE:
If the sample project is located in a system directory, administrator privilege is
required to open it. You can copy the project folder to your directory if admin-
istrator permission cannot be granted.

Intel® SGX uses an anonymous signature scheme, Intel® Enhanced Privacy ID
(Intel® EPID), for authentication (for example, attestation). The supplied key
exchange libraries implement a Sigma-like protocol for session establishment.
Sigma is a protocol that includes a Diffie-Hellman key exchange, but also
addresses the weaknesses of DH. The protocol Intel® SGX uses differs from the
Sigma protocol that's used in IKE v1 and v2 in that the Intel® SGX platform
uses Intel® EPID to authenticate while the service provider uses PKI. (In Sigma,

-118 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

both parties use PKI.) Finally, the KE libraries require the service provider to
use an ECDSA, not an RSA, key pair in the authentication portion of the pro-
tocol and the libraries use ECDH for the actual key exchange.

Remote Key Exchange (KE) Libraries

The RemoteAttestation sample in the SDK uses the remote KE libraries as
described above to create a remote attestation of an enclave, and uses that
attestation during establishment of a secure session (a key exchange).

There are both untrusted and trusted KE libraries. The untrusted KE library is
provided as a static library, sgx ukey exchange[mt].1lib.The Intel®
SGX application needs to link with this library and include the header file
sgx_ukey exchange.h, containing the prototypes for the APIs that the KE
trusted library exposes.

NOTE:
If you are unable to use either of the two pre-built untrusted key exchange
static libraries, the source code for a sample untrusted key exchange library is
included in the isv_app subfolder of the Remote Attestation sample applic-
ation that is shipped with this SDK.

The trusted KE library is also provided as a static library. As a trusted library,
the process for using it is slightly different than that for the untrusted KE lib-
rary. The main difference relates to the fact that the trusted KE library
exposes ECALLs called by the untrusted KE library. This means that the library
has a corresponding EDL file, sgx_tkey exchange.edl, which hasto be
imported in the EDL file for the application enclave that uses the library. We
can see this in code snippet below, showing the complete contents of app
enclave.edl, the EDL file for the app enclave in the sample code.

enclave {

from "sgx tkey exchange.edl" import *;
include "sgx key exchange.h"
include "sgx_ trts.h"
trusted {
public sgx _status_t enclave init ra(
int b _pse,
[out] sgx ra context t *p context);
public sgx status t enclave ra close(
Sgx _ra context t context);

-119 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

It's worth noting that sgx_key exchange.h contains types specific to
remote key exchange and must be included as shown above as well as in the
untrusted code of the application that uses the enclave. Finally, sgx tkey
exchange.h is a header file that includes prototypes for the APIs that the
trusted library exposes, but that are not ECALLs, i.e., APIs called by ISV code in
the application enclave.

Remote Attestation and Protected Session Establishment

This topic describes the functionality of the remote attestation sample in
detail.

NOTE:
In the sample code, the service provider is modeled asa DLL, service pro-
vider.d1l1l.The sample service provider does not depend on

Intel® SGX headers, type definitions, libraries, and so on. This was done to
demonstrate that the Intel SGX is not required in any way when building a
remote attestation service provider.

120 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

isv_enclave
Intel Key ISV Key Intel Key Intel
Service Provider isv_app Exchange Exchange Exchange Trusted
Untrusted Trusted Trusted
Create enclave and call
enclave_init_ra(h_pse)
2 sgx_create_pse_session

SgX_get _extends

L — — _context —
ed_epid_group_id()

8 sgx_ra_get msg

3 sgx_ra_init(g|

| sp_pub_key, b| pse)

4 Sgx_close ps

e_session

1(context, enclave |

10 ra_network_se

d_receive

A msg2- — — —

12 §gX_ra_proc_ms

g2(context, enclavg

14 ra_network_se

13

le— —

d_receive

15
——result- — — —

SgX_ra_proc_m
Sgx_ra_get ms

id, sgx_ra_get ¢

_id,
502_trusted_t,
03 _trusted t, ms

)2)

Figure 22 Remote Attestation and Trust Channel Establishment Flow

An Intel® Software Guard Extensions (Intel® SGX) application would typically

begin by requesting service (for example, media streaming) from a service pro-
vider (SP) and the SP would respond with a challenge. This is not shown in the

figure. The figure begins with the app’s reaction to the challenge.

-121 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

1. The flow starts with the app entering the enclave that will be the end-
point of the KE, passing inb_pse, a flag indicating whether the app/en-
clave uses Platform Services.

2. If b_pse is true, then the isv enclave shall call trusted AE support library
with sgx create pse session () to establish a session with PSE.

3. Code inthe enclave calls sgx_ra init (), passinginthe SP’s ECDSA
public key,g sp pub key,andb pse.Theintegrityof g sp pub
key is a public key is important so this value should just be built into isv_
enclave.

4. Close PSE sessionby sgx close pse session () ifasession is estab-
lished before. The requirement is that, if the app enclave uses Platform
Services, the session with the PSE must already be established before
the app enclave calls sgx _ra init ().

5. sgx_ra init () returnsthe KE context to the app enclave and the

app enclave returns the context to the app.

6. The application calls sgx get extended epid group id() and
sends the value returned inp_extended epid group idtothe
server inmsgo.

7. The server checks whether the extended Intel® EPID group ID is sup-
ported. If the ID is not supported, the server aborts remote attestation.

NOTE:
Currently, the only valid extended Intel® EPID group ID is zero. The
server should verify this value is zero. If the Intel® EPID group ID is not
zero, the server aborts remote attestation.

8. The application calls sgx ra get msgl (), passing in this KE's context.
Figure 3 shows the app also passing in a pointer to the untrusted proxy
corresponding to sgx_ra get ga, exposed by the TKE. This reflects
the fact that the names of untrusted proxies are enclave-specific.

9. sgx_ra get msgl () buildsanS1 message = (ga || GID) and returns it
to the app.

10. The app sends S1 to the service provider (SP) by ra network send
receive (),itwillcall sp ra proc msgl req() toprocessS1and
generate S2.

11. Application eventually receives S2 = gb || SPID || 2-byte

TYPE || 2-byte KDF-ID || SigSP(gb, ga) || CMAC_ . (gb

-122 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

|| SPID || 2-byte TYPE || 2-byte KDF-ID || SigSP (gb,
ga)) || SigRL.

12. The application calls sgx _ra proc msg2 (), passing in S2 and the con-
text.

13. The code in sgx_ra_proc_msg2 () buildss3 = CMAC_ (M) | M

whereM = ga | |PS SECURITY PROPERTY|| QUOTE and returns it.
Platform Services Security Information is included only if the app/en-
clave uses Platform Services.

14. Application sends the msg3 to the SP by ra network send
receive (), and the SP verifies the msg3.

15. SP returns the verification result to the application.

At this point, a session has been established and keys exchanged. Whether the
service provider thinks the session is secure and uses it depends on the secur-
ity properties of the platform as indicated by the S3 message. If the platform’s
security properties meet the service provider's criteria, then the service pro-
vider can use the session keys to securely deliver a secret and the app enclave
can consume the secret any time after it retrieves the session keys by calling
sgx_ra_get keys () onthe trusted KE library. This is not shown in the fig-
ure, nor is the closing of the session. Closing the session requires entering the
app enclave and calling sgx_ra close () onthe trusted KE library, among
other app enclave-specific cleanup.

Remote Attestation with a Custom Key Derivation Function (KDF)

By default, the platform software uses the KDF described in the definition of
the sgx ra get keys APlwhenthe sgx ra init APlisused to generate
the remote attestation context. If the ISV needs to use a different KDF than
the default KDF used by Intel® SGX PSW, the ISV can use the sgx _ra init
ex API to provide a callback function to generate the remote attestation keys
used in the SIGMA protocol (SMK) and returned by the APl sgx ra get
keys (SK, MK, and VK). The decision to use a different KDF is a policy of the
ISV, but it should be approved by the ISV's security process.

Debugging a Remote Attestation Service Provider

As an ISV writing the remote attestation service provider, you may want to
debug the message flow. One way to do this would be to provide pre-gen-
erated messages that can be replayed and verified. However, not that S1 mes-
sage = (GID || ga) includesthe random component ga generated

inside an enclave. Also, the remote attestation service provider generates a
random public+private key pair as part of its msg2 generation, but without

123 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

any interaction with Intel® SGX. Finally, each of these has state or context that
is associated with cryptographic operations and is used to ensure that certain
calls being made are in the correct order and that the state is consistent.
These characteristics help protect the remote attestation flow against attacks,
but also make it more difficult to replay pre-generated messages.

To overcome these, the cryptographic library is modified and used (only) by
the sample service provider. Any time that key generation, signing, or other
operation requests a random number, the number 9 is returned. This means
that the crypto functions from sample libcrypto.lib are predictable
and cryptographically weak. If we can replay msgl send from the isv_ app,
the sample service provider.dll will always generate the exact same
msg2. We now have a sufficient system to replay messages sent by the isv
app and have it verify that the responses sent by the remote service are the
expected ones.

To replay messages and exercise this verification flow, passin 1 or 2 as a com-
mand-line argument when running the sample application isv_app. The
isv_ app willignore errors generated by the built-in checks in the Intel SGX.
Developers wishing to debug their remote attestation service provider should
be able to temporarily modify their cryptographic subsystem to behave in a
similar manner as the sample libcrypto.lib and replay the pre-com-
puted messages stored in sample messages.h. The responses from their
own remote attestation service provider should match the ones generated by
ours, which are also stored in sample messages.h.

NOTE

Do not use the sample cryptographic library provided in this sample in pro-
duction code.

Using a Different Extended Intel® EPID Group for Remote Attestation

The Intel® SGX platform software can generate Quotes signed by keys belong-
ing to a more than one extended Intel® EPID Group. Before remote attestation
starts, the ISV Service provider (SP) needs to know which extended Intel®
EPID Group the PSW supports. The ISV SP will use this information to request
Quote generation and verification in the correct extended Intel® EPID Group.
The APl sgx get extended epid group id returnsthe extended Intel®
EPID Group ID. The ISV application should query the currently configured
extended Intel® EPID Group ID from the platform software using this APl and
sending it to the ISV SP. The ISV SP then knows which extended Intel® EPID
Group to use for remote attestation. If the ISV SP does not support the

-124 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

provided extended Intel® EPID Group, it will terminate the remote attestation
attempt.

ECDSA Remote Attestation

The Intel® SGX platform software consume The Intel® SGX Data Center Attest-
ation Primitives (Intel® SGX DCAP) in order to support ECDSA attestation. The
platform which creates the ECDSA attestation must support Flexible Launch
Control (FLC).

The ECDSA Attestation key is created and owned by the owner of the remote
attestation infrastructure but is certified by an Intel rooted key whose cer-
tificate is distributed by Intel. The Intel rooted certificate proves that the plat-
form running the Intel® SGX enclave is valid and in good standing.

The application calls sgx_select att key idtoselect the ECDSA attest-
ation key from a list provided by the off-platform Quote verifier.

Sealed Data

The Intel® SGX SDK provides APIs to encrypt and integrity-protect enclave
secrets to store them outside the enclave, such as on disk. The Intel® SGX Plat-
form SW provides Monotonic Counter and Trusted Time service to ISV
enclaves. The Monotonic Counter can be used to implement replay-protected
policy, and the Trusted Time can be used to enforce time based policy. Both
of them are in a form of Sealed Data. The requirement of replay-protected
data blob and time based policy data blob is quite subtle. The Intel® SGX SDK
will provide reference code to help ISV to implement them correctly.

The sample code SealedData is shipped with the Intel® Software Guard Exten-
sions SDKin [Intel SGX SDK Install Path]src\SealedData folder.
To compile, you only need to open the project with Microsoft* Visual Studio
20109.

NOTE:
To run this sample in the hardware mode, access to the Internet.

NOTE:
If the sample project is located in a system directory, administrator privilege is
required to modify it. You can copy the project folder to your directory if
administrator permission cannot be granted.

-125 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Replay Protected Policy

In Enterprise Rights Management (ERM) type usages, an offline activity log
might need to be maintained and periodically audited by the enterprise, for
example, depending on whether and/or how many times a secret document is
viewed or printed offline. If the offline activity log is tampered with or deleted,
the ERM application will disable the offline use capability. A functional secure
document viewing ERM application is quite complex, involving credential veri-
fication, document key provisioning, secure document rendering, secure dis-
play and many other security processes.

The Replay Protected policy sample code will not implement a full secure doc-
ument viewing functionality, instead, it will demonstrate:

« Initializing a replay protected policy, to create an offline activity log
together with a secret, protected by a Monotonic Counter.

« Verifying and updating the replay protected policy, to verify and update
the activity log before the secret can be used to perform a function.

« Deleting the replay protected policy, to delete the activity log and the
associated Monotonic Counter after the secret is invalidated.

Initializing a Policy

1. The Enclave creates a new Monotonic Counter using sgx create
monotonic counter.

2. The Enclave fills the activity log with the sample usage secret and usage
data, the Monotonic Counter UUID and the Monotonic Counter
Value returned by sgx create monotonic counter.

3. The Enclave seals the activity log into sealed data using sgx seal
data.

Verifying a Policy

1. The Enclave verifies and decrypts the sealed data using sgx _unseal
data

2. The Enclave retrieves the current Monotonic Counter value of the asso-
ciated Monotonic Counter using sgx read monotonic counter.Ifit
fails, abort the operation.

3. The Enclave verifies the Monotonic Counter Value returned by sgx
read monotonic counter isthe same as the Monotonic Counter
Value in the activity log.

4. The Enclave releases the secret to perform functions.

126 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Updating a Policy

1.

The Enclave verifies activity log.

2. The Enclave checks that the secret and usage data inside the activity log

7.

has not been invalidated or expired, for example, by comparing the use
count in the activity log against a predetermined threshold. If the secret
is invalidated or expired, the function that requires the secret will not be
rendered.

. The Enclave Increases the Monotonic Counter value of the associated MC

using sgx_increment monotonic counter. Ifit fails,abort the
operation.

The Enclave verifies the Monotonic Counter value returned in sgx__
increment monotonic counter isequalto the old value, pre-
viously returned by sgx read monotonic counter,plusone.

. The Enclave updates the activity log and the Monotonic Counter

Value.

The Enclave seals the activity log into Sealed Data using sgx seal
data.

The Enclave releases the secret to perform functions.

Deleting a Policy

1.

The Enclave follows the process of updating the Replay-Protected Activ-
ity Log to set the use counter to the maximum number of uses allowed,
before releasing the secret for the last time.

. User connects to the network to upload the activity log and receives a

new secret.

. The Enclave deletes the activity log and the associated Monotonic

Counter using sgx _destroy monotonic counter.Ifitis blocked by
the attacker, the associated activity log does not allow releasing of the
secret as the secret inside the activity log is invalidated or expired.

Time Based Policy

The sample code demonstrates a proper implementation of a Time-Based
Policy in the form of an offline Digital Rights Management (DRM) Key that
expires after a certain period of time. The sample code will not implement full
DRM functionality. Instead, it demonstrates:

-127 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

« Creating offline sealed data with the DRM key, a time stamp and the
expiration policy.

« Verifying the DRM key has not expired before releasing the key to per-
form function.

Initializing a Policy

1. The Enclave retrieves the time reference and the time source nonce
using sgx_get trusted time.

2. The Enclave fills the policy structure with the sample usage secret, the
time policy, the time reference and the time source nonce returned by
sgx_get trusted time.

3. The Enclave seals the policy structure into Sealed Data using sgx
seal data.

Verifying a Policy

1. The Enclave verifies and decrypts the sealed data using sgx unseal
data.

2. The Enclave retrieves the current time using sgx_get trusted
time.

3. The Enclave verifies the time source nonce returned by sgx get trus-
ted time isthe same as the time source nonce in the policy structure.
If not, abort the operation.

4. Calculate time elapsed.

5. Verify the policy. If the time limit has expired, abort the operation.

6. The Enclave releases the secret to perform functions.

Intel® SGX2 Enclave

The project Sgx2Enclave illustrates creating and using the Intel® SGX 2.0
Enclave Dynamic Memory Management (Intel® SGX EDMM) enclave for the
Intel® SGX 2.0 hardware platform, leveraging the sgx tedmm library provided
by the Intel® SGX SDK.

The project shows how to opt-in to Intel® SGX 2.0 behavior by linking the
sgx_tedmmn library and importing the sgx tedmm. ed1 file. It also demon-
strates Intel® SGX 2.0 API usage.

The code is shipped with the Intel® SGX SDK and is located in [Intel SGX

SDK Install Path]src\Sgx2Enclave.You must open the projectin
Microsoft* Visual Studio 2019.

128 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

NOTE:
If the sample project is located in a system directory, administrator privileges
are required to open the project. You can copy the project folder to your dir-
ectory if an administrator permission cannot be granted.

Switchless

The Switchless sample is designed to illustrate the usage and potential per-
formance benefits of the Intel® Software Guard Extensions (Intel® SGX) Switch-
less Calls. It demonstrates the usage of sgx create enclave ex and the
Switchless Calls configuration. The Switchless sample EDL defines regular and
switchless ECALLs and regular and switchless OCALLs. The sample application
calls sample ECALLSs/OCALLs in loops and compares the execution time of
the regular and switchless calls.

Protected Code Loader

Comparing the sample code in folder SampleEnclavePCL to the sample code
in folder SampleEnclave demonstrates how to integrate the Intel® Software
Guard Extensions Protected Code Loader (Intel® SGX PCL) into an ISV existing
Intel® SGX project.

Universal Windows Platform (UWP) Sample Enclave

Project SampleEnclaveUwp is a sample UWP application that uses the Intel®
Software Guard Extensions (SGX) SDK.

This project is a port of the SampleEnclave project that comes with the Intel®
SGX SDK to the UWP, based on the BlankAppUWP C++ project generated by
the Visual Studio Wizard. To use this project, you should be familiar with the
SampleEnclave Desktop or Win32 version.

The code is shipped with the Intel® SGX SDK and is located in [Intel SGX
SDK Install Path]src\SampleEnclaveUwp.Open the projectinthe
Microsoft* Visual Studio 2019.

NOTE:
If the sample project is located in a system directory, administrator privileges
are required to open the project. You can copy the project folder to your dir-
ectory if an administrator permission cannot be granted.

To debug this sample, see Attaching to and Debugging an Enclave inside a
Running UWP application

129 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SampleSGXEnable

Project SampleSGXEnable is a sample application which is executed outside
Enclave. It's main functions are:

1. Query Intel® SGX device's status.
2. Enable Intel® SGX device if it's set as Software Control inside BIOS.

The code is shipped with the Intel® SGX SDK and is located in [Intel SGX
SDK Install Path]src\SampleSGXEnable.Open the projectinthe
Microsoft* Visual Studio 2019.

NOTE:

This sample codes should be used inside APP installer to query and enable
Intel® SGX device during installation.

-130 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Library Functions and Type Reference
This topic includes the following sub-topics to describe library functions and
type reference for Intel® Software Guard Extensions SDK:

o Untrusted Library Functions
o Trusted Libraries

o Function Descriptions

o Types and Enumerations

o Error Codes

Untrusted Library Functions

The untrusted library functions can only be called from application code - out-
side the enclave.

Enclave Creation and Destruction

These functions are used to create or destroy enclaves:

o Sgx_create_enclave
« sgx_create_enclave_ex
» sgx_destroy_enclave

Enclave Enumeration

Use this function to enumerate all the processes that have created and are cur-
rently using one or more enclaves. You can also use this function to obtain
information about all enclaves loaded on the platform.

e Sgx_enum_enclaves

Quoting Functions

These functions allow application enclaves to ensure that they are running on
the Intel® Software Guard Extensions environment.

NOTE:

To run these functions in the hardware mode, you need to access to the Inter-
net. Configure the system network proxy settings if needed.

NOTE:

Under certain conditions, the Architectural Enclave Service Manager (AESM)
may fail to load Intel® signed enclaves due to the lack of resources. In this case,

-131 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_ra get msgl,and sgx ra proc msg2 might return errors. To fix
this problem, exit the applications with the loaded enclave to release the
resource and retry.

These functions perform Intel® EPID quoting.

e Sgx_init_quote

« sgx_calc_quote_size

o Sgx_get_quote_size

» sgx_get_quote

o Sgx_report_attestation_status
o sgx_check update_status

These functions perform Intel® EPID quoting and ECDSA quoting.

» sgx_select_att_key id

e Sgx_init_quote_ex

o Sgx_get quote_size_ex

» sgx_get_quote_ex

o sgx_get_supported_att_key id_num
» sgx_get supported_att_key ids

Untrusted Key Exchange Functions

These functions allow exchanging of secrets between ISV's server and
enclaves. They are used in concert with the trusted Key Exchange functions.

NOTE:

To run these functions in the hardware mode, you need to access to the Inter-
net. Configure the system network proxy settings if needed.

NOTE:
Under certain conditions, the Architectural Enclave Service Manager (AESM)
may fail to load Intel® signed enclaves due to the lack of resources. In this case,
sgx_ra get msgl,and sgx_ra proc_msg2 might return errors. To fix
this problem, exit applications with the loaded enclave to release the resource
and retry.

These functions perform Intel® EPID attestation.

e Sgx_ra_get_msg1
e SgX_ra_proc_msg2
o sgx_get_extended_epid_group_id

-132-

Intel® Software Guard Extensions Developer Reference for Windows* OS

These functions perform Intel® EPID attestation.and ECDSA attestation.

e SgX_ra_get_msg1_ex
e SgX_ra_proc_msg2_ex

Untrusted Platform Service Function

This function helps ISVs determine what Intel® SGX Platform Services are sup-
ported by the platform.

NOTE:

To run this function in the hardware mode, you need to access to Internet. Con-
figure the system network proxy settings if needed.

NOTE:

In some rare condition, some Intel® SGX signed enclaves will not be loaded
because of out of resource. In such case, sgx ra get msgl,and sgx ra
proc_msg2 might return errors. To fix this problem, exit applications with the
loaded enclave to release the resource and retry.

o sgx_get_ps_cap

Intel® SGX Enabling and Launch Control Functions

The enabling and launch control function helps you to enable the Intel® Soft-
ware Guard Extensions (Intel® SGX) device and return appropriate status.

« sgx_enable_device
» SgXx_cap_enable_device

This function provides an Enclave Signing Key Allow List Certificate Chain,
which contains the signing key(s) of the Intel® SGX application enclave(s)
allowed to be launched. If the system has not acquired an up-to-date Enclave
Signing Key Allow List Certificate Chain, you can provide the chain to the sys-
tem by setting sgx register wl cert chain.Use sgx get whitel-
ist size to get the size of the current Enclave Signing Key Allow List
Certificate Chain. Use sgx _get whitelist to get the chain.

« sgx_register_wl_cert_chain
» sgx_get_whitelist_size
o sgx_get_whitelist

Intel® SGX device capability Functions

-133 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The Intel® SGX device capability functions help you query the Intel
SGX device status and the version of the PSW installed.

e SgX_is_capable
o SgX_cap_get_status
e SgX_cap_get_psw_version_string

Trusted Libraries

The trusted libraries are static libraries that linked with the enclave binary.
The Intel® Software Guard Extensions SDK ships with several trusted libraries
that cover domains such as standard C/C++ libraries, synchronization, encryp-
tion and more.

These functions/objects can only be used from within the enclave.

Trusted libraries built for HW mode (for example, not for simulation) contain a
string with the release number. The string version, which uses the library name
as prefix, is defined when the SDK is built and consists of various parameters
such as the product number, SVN revision number, build number, and so on.
This mechanism ensures all trusted libraries shipped in a given SDK release
will have the same version number and allows quick identification of the trus-
ted libraries linked into an enclave.

For instance, sgx tstdc.1lib contains a string version like SGX TSTDC
VERSION 1.0.0.0.Ofcourse,the last digits vary depending on the SDK
release.

CAUTION:
Do not link the enclave with any untrusted library including C/C++ standard lib-
raries. This action will either fail the enclave signing process or cause a runtime
failure due to the use of restricted instructions.

Trusted Runtime System

The Intel® SGX trusted runtime system (tRTS) is a key component of the Intel®
Software Guard Extensions SDK. It provides the enclave entry point logic as
well as other functions to be used by enclave developers.

« Intel® Software Guard Extensions Helper Functions
o Custom Exception Handling
« Intrinsic Functions

-134 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Intel® Software Guard Extensions Helper Functions

The tRTS provides the following helper functions for you to determine
whether a given address is within or outside enclave memory.

o sgx_is_within_enclave
» sgx_is_outside_enclave

The tRTS provides a wrapper to the RDRAND instruction to generate a true
random number from hardware. The C/C++ standard library functions rand
and srand functions are not supported within an enclave because they only
provide pseudo random numbers. Instead, enclave developers should use the
sgx_read rand function to get true random numbers.

» sgx_read_rand

Custom Exception Handling

The Intel® Software Guard Extensions SDK provides an API to allow you to
register functions, or exception handlers, to handle a limited set of hardware
exceptions. When one of the enclave supported hardware exceptions occurs
within the enclave, the registered exception handlers will be called in a spe-
cific order until an exception handler reports that it has handled the excep-
tion. For example, issuing a CPUID instruction inside an Enclave will result in a
#UD fault (Invalid Opcode Exception). ISV enclave code can call sgx
register exception handler toregister afunction of type sgx excep-
tion handler t torespond to this exception. Any custom exception hand-
lers should check the validity of the exception, as it may be coming from an
untrusted source. To check a list of enclave supported exceptions, see Intel®
Software Guard Extensions Programming Reference.

NOTE:
Custom exception handling is only supported in HW mode. Although the
exception handlers can be registered in simulation mode, the exceptions can-
not be caught and handled within the enclave.

NOTE:
OCALLs are not allowed in the exception handler.

NOTE:
Custom exception handing only saves general purpose registersin sgx
exception info_ t.You should be careful when touching other registers in
the exception handlers.

The Custom Exception Handling APIs are listed below:

-135 -

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

Intel® Software Guard Extensions Developer Reference for Windows* OS

o SgX_register_exception_handler
o SgX_unregister_exception_handler

Custom Exception Handler for CPUID Instruction

If an ISV requiresusing the CPUID information within an enclave, then the
enclave code must make an OCALL to perform the CPUID instruction in the
untrusted application. The Intel® SGX SDK provides two functions in the lib-
rary sgx_tstdc to obtain CPUID information through an OCALL:

e sgx_cpuid
e sSgx cpuild ex

In addition, the Intel SGX SDK also provides the following intrinsics which call
the above functions to obtain CPUID data:

e cpuid
e cpuidex

Both the functions and intrinsics result in an OCALL to the uRTS library to
obtain CPUID data. The results are returned from an untrusted component in
the system. It is recommended that threat evaluation be performed to ensure
that CPUID return values are not problematic. Ideally, sanity checking of the
return values should be performed.

If an ISV's enclave uses a third party library which executes the CPUID instruc-
tion, then the ISV would need to provide a custom exception handler to
handle the exception generated from issuing the CPUID instruction (unless the
third party library registers its own exception handler for CPUID support). The
ISV is responsible for analyzing the usage of the specific CPUID result
provided by the untrusted domain to ensure it does not compromise the
enclave security properties. Recommended implementation of the CPUID
exception handler involves:

1. ISV analyzes the third party library CPUID usages, identifying required
CPUID results.

2. ISV enclave code initialization routine populates a cache of the required
CPUID results inside the enclave. This cache might be maintained by the
RTS or by ISV code.

3. ISV enclave code initialization routine registers a custom exception hand-
ler.

4. The custom exception handler, when invoked, examines the exception
information and faulting instruction. If the exception is caused by a

-136 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

CPUID instruction:
1. Retrieve the cached CPUID result and populate the CPUID instruc-
tion output registers.
2. Advance the RIP to bypass the CPUID instruction and complete the
exception handling.

Intrinsic Functions

The majority of Microsoft* Visual C++ intrinsics can be called inside the
enclave, and an enclave project can include Microsoft* standard <intrin.h>
directly with few restrictions. For example, you should not use intrinsics that
generate instructions unsupported inside an enclave. All unsupported intrinsic
functions generally fall into following categories:

e |/O related functions.

« Instructions requiring ring O privileges or can change privilege level.

o OS or system related functions.

« Intrinsics which are considered unprotected and encryption alternatives.

1. There are few requirements for including Microsoft* standard
<intrin.h>:
1. Add $ (VC_VC IncludePath) toInclude Directories.
2. Set Ignore Standard Include Path toNo.
2. Use /Oi or #pragma intrinsic(...) to enable MSVC intrinsics.

The <sgx_intrin.h> also provides compile warnings for unsupported
intrinsics.

Trusted Service Library
The Intel® Software Guard Extensions SDK provides a trusted library named

sgx_tservice for secure data manipulation and protection. The sgx tser-
vice library provides the following trusted functionality and services:

« Intel® Software Guard Extensions Instruction Wrapper Functions

« Intel® Software Guard Extensions Sealing and Unsealing Functions
» Trusted Platform Service Functions

o Diffie—Hellman (DH) Session Establishment Functions

o Custom Alignment Interfaces

Intel® Software Guard Extensions Instruction Wrapper Functions

The sgx tservice library provides functions for getting specific keys and
creating and verifying an enclave report. The API functions are listed below:

-137 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

o sgx_get_key
e SgX_create_report
« sgx_verify report

The sgx_tservice library also provides two help functions:

« sgx_self report for getting a self cryptographic report
» sgx_self_target for getting a self target info of an enclave.

Intel® Software Guard Extensions Sealing and Unsealing Functions

The sgx tservice library provides the following functions:

o Exposes APIs to create sealed data which is both confidentiality and
integrity protected.

o Exposes an API to unseal sealed data inside the enclave.

« Provides APIs to authenticate and verify the input data with AES-GMAC.

See the following related topics for more information.

o sgx_seal data

» sgx_seal data_ex

» sgx_unseal_data

e SgX_mac_aadata

e SgX_mac_aadata_ex
e SgX_unmac_aadata

The library also provides APlIs to help calculate the sealed data size, encrypt
text length, and Message Authentication Code (MAC) text length.

« sgx_calc_sealed _data_size
» sgx_get_add_mac_txt_len
o Sgx_get_encrypt_txt_len

SealLibrary Introduction

When an enclave is instantiated, it provides protections (confidentiality and
integrity) to the data by keeping it within the boundary of the enclave. Enclave
developers should identify enclave data and/or state that is considered secret
and potentially needs preservation across the following enclave destruction
events:

« Application is done with the enclave and closes it.
« Application itself is closed.

-138 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

o The platform is hibernated or shutdown.

In general, the secrets provisioned within an enclave are lost when the enclave
is closed. However if the secret data needs to be preserved during one of
these events for future use within an enclave, it must be stored outside the
enclave boundary before closing the enclave. In order to protect and preserve
the data, a mechanism is in place which allows enclave software to retrieve a
key unique to that enclave. This key can only be generated by that enclave on
that particular platform. Enclave software uses that key to encrypt data to the
platform or to decrypt data already on the platform. Refer to these encrypt
and decrypt operations as sealing and unsealing respectively as the data is
cryptographically sealed to the enclave and platform.

To provide strong protection against potential key-wear-out attacks, a unique
seal key is generated for each data blob encrypted with the sgx seal data
API call. A key ID for each encrypted data blob is stored in clear alongside the
encrypted data blob. The key ID is used to re-generate the seal key to decrypt
the data blob.

AES-GCM (AES - Advanced Encryption Standard) is utilized to encrypt and
MAC-protect the payload. To protect against software-based side channel
attacks, the crypto implementation of AES-GCM utilizes Intel® Advanced
Encryption Standard New Instructions (Intel® AES-NI), which is immune to soft-
ware-based side channel attacks. The Galois/Counter Mode (GCM) is a mode of
operation of the AES algorithm. GCM assures authenticity of the confidential
data (of up to about 64 GB per invocation) using a universal hash function.
GCM can also provide authentication assurance for additional data (of prac-
tically unlimited length per invocation) that is not encrypted. GCM can also
provide authentication assurance for additional data (of practically unlimited
length per invocation) that is not encrypted. If the GCM input contains only
data that is not to be encrypted, the resulting specialization of GCM, called
GMAC (Galois Message Authentication Code), is simply an authentication mode
for the input data. The sgx _mac aadata API call restricts the input to non-
confidential data to provide data origin authentication only. The single output
of this function is the authentication tag.

Example Use Cases

One example is that an application may start collecting secret state while
executing that needs to be preserved and utilized on future invocations of
that application. Another example is during application installation, a secret
key may need to be preserved and verified upon starting the application.

-139 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

For these cases the seal APIs can be utilized to seal the secret data (key or
state) in the examples above, and then unseal the secret data when needed.

Sealing

1. Use sgx_calc sealed data size to calculate the number of bytes
to allocate for the sgx sealed data t structure.

2. Allocate memory for the sgx sealed data t structure.

3. Call sgx_seal data to perform sealing operation

4. Save the sealed data structure for future use.

Unsealing

1. Use sgx_get encrypt txt lenandsgx get add mac txt

len to determine the size of the buffers to allocate in terms of bytes.
2. Allocate memory for the decrypted text and additional text buffers.
3. Call sgx_unseal data to perform the unsealing operation.

Trusted Platform Service Functions

The sgx_tservice library provides the following functions that allow an ISV
to use platform services and get platform services security property.

NOTE:

To run these functions in the hardware mode, you need to access to Internet.
Configure the system network proxy settings if needed.

e SgX_create_pse_session

o sgx_close_pse_session

o Sgx_get_ps_sec_prop

o Sgx_get_ps_sec_prop_ex

o sgx_get_trusted_time

e SgXx_create_monotonic_counter_ex
e SgX_create_monotonic_counter

o sgx_destroy_monotonic_counter

e SgX_increment_monotonic_counter
» Sgx_read_monotonic_counter

Diffie—-Hellman (DH) Session Establishment Functions

The sgx tservice library provides the following functions to allow an ISV to
establish secure session between two enclaves using the EC DH Key exchange
protocol.

-140 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

« sgx_dh_init_session

o sgx_dh_responder_gen_msg1
« sgx_dh_initiator_proc_msg1

» sgx_dh_responder_proc_msg2
o sgx_dh_initiator_proc_msg3

Custom Alignment Interfaces

The sgx_tservice library provides a set of interfaces that facilitate custom
alignment of secrets and structures that contain secrets. Different interfaces
are used for secrets that are statically-defined (stack, global, static) versus
dynamically-defined (heap) and for secrets in C++ code versus C code.

See the following related topics for more information:

« class template custom_alignment_aligned
o sgx_get_aligned_ptr

« sgx_aligned_malloc

o sgx_aligned_free

C Standard Library

The Intel® Software Guard Extensions SDK includes a trusted version of the C
standard library. The library is named sgx_tstdc (trusted standard C), and
can only be used inside an enclave. Standard C headers are located under
[Intel SGX SDK Install Path]lincludel\tlibec.

sgx_tstdc provides a subset of C11 functions that are ported from the
OpenBSD* project. Unsupported functions are not allowed inside an enclave
for the following reasons:

« The definition implies usage of a restricted CPU instruction.

« The definition is known to be unsafe or insecure.

« The definition implementation is too large to fit inside an enclave or
relies heavily on information from the untrusted domain.

o The definition is compiler specific, and not part of the standard.

« The definition is a part of the standard, but it is not supported by a spe-
cific compiler.

See Unsupported C Standard Functions for a list of unsupported C11 defin-
itions within an enclave.

-141 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Locale Functions

A trusted version of locale functions is not provided primarily due to the size
restriction. Those functions rely heavily on the localization data (normally 1MB
to 2MB), which should be preloaded into the enclave in advance to ensure
that it will not be modified from the untrusted domain. This practice would
increase the footprint of an enclave, especially for those enclaves not depend-
ing on the locale functionality. Moreover, since localization data is not avail-
able, wide character functions inquiring enclave locale settings are not
supported either.

Random Number Generation Functions

The random functions srand and rand are not supported in the Intel® SGX
SDK C library. A true random function sgx_read rand is provided in the
tRTS library by using the RDRAND instruction. However, in the Intel® SGX sim-
ulation environment, this function still generates pseudo random numbers
because RDRAND may not be available on the hardware platform.

String Functions

The functions strcpy and strcat are not supported in the Intel® SGX SDK C
library. You are recommended to use strncpy and strncat instead.

Abort Function

The abort () function is supported within an enclave but has a different beha-
vior. When a thread calls the abort function, it makes the enclave unusable by
setting the enclave state to a specific value that allows the tRTS and applic-
ation to detect and report this event. The aborting thread generates an excep-
tion and exits the enclave, while other enclave threads continue running
normally until they exit the enclave. Once the enclave is in the unusable state,
subsequent enclave calls and OCALL returns generate the same error indic-
ating that the enclave is no longer usable. After all thread calls abort, the
enclave is locked and cannot be recovered. You have to destroy, reload and
reinitialize the enclave to use it again.

Thread Synchronization Primitives

Multiple untrusted threads may enter an enclave simultaneously as long as
more than one thread context is defined by the application and created by
the untrusted loader. Once multiple threads execute concurrently within an
enclave, they will need some forms of synchronization mechanism if they
intend to operate on any global data structure. In some cases, threads may use
the atomic operations provided by the processor’s ISA. In the general case,

-142 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

however, they would use synchronization objects and mechanisms similar to
those available outside the enclave.

The Intel® Software Guard Extensions SDK already supports event, mutex and
conditional variable synchronization mechanisms by means of the following

APl and data types defined in the Types and Enumerations section. Some func-
tions included in the trusted Thread Synchronization library may make calls
outside the enclave (OCALLs). If you use any of the APIs below, you must first
import the needed OCALL functions from sgx_tstdc.edl. Otherwise, you
will get a linker error when the enclave is being built; see Calling Functions out-
side the Enclave for additional details. The table below illustrates the prim-
itives that the Intel® SGX Thread Synchronization library supports, as well as
the OCALLs that each API function needs.

Function API OCall Function
Mutex Synchronization |sgx_thread _mutex_

init

sgx_thread_mutex_

destroy
sgx_thread_mutex_ [sgx_thread_wait_untrusted_
lock event_ocall
sgx_thread_mutex_
trylock
sgx_thread _mutex_ [sgx_thread_set_untrusted_
unlock event_ocall
Condition Variable Syn-lsgx_thread cond _
chronization init
sgx_thread_cond_
destroy
sgx_thread _cond_ [sgx_thread_wait_untrusted_
wait event_ocall
sgx_thread_setwait_untrusted_
events_ocall
sgx_thread cond_ [sgx_thread_set_untrusted_
signal event_ocall

sgx_thread cond_ [sgx_thread_set_multiple_untrus-
broadcast ted_events_ocall

Event Synchronization |[sgx_create_event

-143 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_set_event sgx_thread_wait_untrusted
event_ocall

sgx_thread_set_untrusted
event_ocall

sgx_thread_set_untrusted_
event_ocall

sgx_thread_set_multiple_untrus-
ted_events_ocall
sgx_reset_event sgx_thread_wait_untrusted_
event_ocall

sgx_thread_set_untrusted_
event_ocall
sgx_destroy_event [sgx_thread wait_untrusted
event_ocall

sgx_thread_set_untrusted_

event_ocall
sgx_wait_for_ sgx_thread_wait_untrusted_
single_object event_ocall

sgx_thread_set_untrusted_
event_ocall

sgx_thread_wait_untrusted_
event_ocall

sgx_thread_setwait_untrusted_

events_ocall
sgx_wait_for_mul- |[sgx_thread_wait_untrusted_
tiple_objects event_ocall

sgx_thread_set_untrusted_
event_ocall

sgx_thread_wait_untrusted_
event_ocall

sgx_thread_setwait_untrusted_
events_ocall

Thread Management [sgx_thread_self
sgx_thread_equal

-144 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Query CPUID inside Enclave

The Intel® Software Guard Extensions SDK provides two functions for enclave
developers to query a subset of CPUID information inside the enclave:

e Sgx_cpuid
e SgX_cpuidex

Secure Functions

The Intel® Software Guard Extensions SDK provides some secure functions. An
enclave project can include <mbusafecrt.h> to use them.

See Supported C Secure Functions for a list of supported secure functions
definitions within an enclave.

Non-Local Jumps

The C standard library provides a pair of functions, set jmp and longjmp,
that can be used to perform non-local jumps. set jmp saves the current pro-
gram state into a data structure. 1ongjmp can later use this data structure to
restore the execution context. This means that after 1ongjmp, execution con-
tinues at the setjmp call site.

Since setjmp/longjmp may transfer execution from one function to a pre-
determined location in another function, normal stack unwinding does not
occur. As a result, you must use this functionality carefully, ensuring that an
enclave only calls setjmp in a valid context. You should also perform extens-
ive security validation to ascertain that the enclave never uses these functions
in such a way it could result in undefined behavior. Typical use of
setjmp/longjmp is the implementation of an exception mechanism (error
handling). However, you must never use these functions in C++ programs. You
should use the standard CEH instead. You are recommended to review the
information provided at cert.org on how to use setjmp/longjmp securely.

C++ Language Support

The Intel® Software Guard Extensions SDK provides a trusted library for C++
support inside the enclave. C++ developers would utilize advanced C++ fea-
tures that require C++ runtime libraries.

The ISO/IEC 14882: C++ standard is chosen as the baseline for the Intel® Soft-
ware Guard Extensions SDK trusted library. Most of standard C++ features are
fully supported inside the enclave, and including:

- 145 -

https://www.securecoding.cert.org/confluence/display/c/MSC22-C.+Use+the+setjmp(),+longjmp()+facility+securely

Intel® Software Guard Extensions Developer Reference for Windows* OS

1. Dynamic memory management with new/delete;

2. Globalinitializers are supported (usually used in the construction of
global objects);

3. Run-time Type Identification (RTTI);

4. C++ exception handling inside the enclave.

Currently, global destructors are not supported due to the reason that EPC
memory will be recycled when destroying an enclave.

NOTE

C++ objects are not supported in enclave interface definitions. If an applic-
ation needs to pass a C++ object across the enclave boundary, you are recom-
mended to store the C++ object’s data in a C struct and marshal the data
across the enclave interface. Then you need to instantiate the C++ object
inside the enclave with the marshaled C struct passed in to the constructor (or
you may update existing instantiated objects with appropriate operators).

C++ Standard Library

The Intel® Software Guard Extensions SDK includes a trusted version of the
C++ standard library that conforms to the C++11 standard. Visual Studio* uses
sgx_tcxx.lib,which has been ported from libc++ and supports most
C++11 features.

As for the C++ standard library, most functions will work just as its untrusted
counterpart, but here is a high level summary of features that are not sup-
ported inside the enclave:

1. 1/O related functions and classes, like <iostream>;
2. Functions depending on a locale library;
3. Any other functions that require system calls.

However, only C functions can be used as the language for trusted and untrus-
ted interfaces. While you can use C++ to develop your enclaves, you should
not pass C++ objects across the enclave boundary.

Known Issue for C++ Exception

There is a known issue for C++ exception handling inside the enclave. An
exception object cannot be rethrown after it has been handled once (after a
catch block), even though the object was not expected to be destroyed. The
issue exists only in the 32-bit enclave.

Here is an example:

void go2 ()

- 146 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

try {
throw 1;

}
catch (...) {
try |
throw;
}
catch (...) {
} // exception object was destroyed unexpectedly
throw; // Crash!

}

Cryptography Library

The Intel® Software Guard Extensions Software Development Kit (Intel®

SGX SDK) includes a trusted cryptography library named sgx tcrypto. It
contains cryptographic functions used by other trusted libraries included in
the SDK, such as the sgx tservice library. Thus, functionality of this library
is limited.

e sgx_sha256_msg

e sgx_sha256_init

» sgx_sha256_update

» sgx_sha256_get_hash

o sgx_sha256_close

« sgx_rijndael128GCM_encrypt
o sgx_rijndael128GCM_decrypt
e Sgx_aes_gcm128_enc_init

e Sgx_aes_gcm128_enc_update
e Sgx_aes_gcm128_enc_get_mac
» sgx_aes_gcm_close

o sgx_rijndael128_cmac_msg

e SgX_cmac128_init

e Sgx_cmac128 update

e sgx_cmac128_final

o Sgx_cmac128_close

e SgX_aes_ctr_encrypt

o sgx_aes_ctr_decrypt

e SgX_ecc256_open_context

e Sgx_ecc256_close_context

e SgXx_ecc256 create_key pair

-147 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

e Sgx_ecc256_compute_shared_dhkey
e sgx_ecc256_check point

» sgx_ecdsa_sign

o sgx_ecdsa_verify

« sgx_ecdsa_verify_hash

e Sgx_rsa3072_sign

e Sgx_rsa3072_sign_ex

o Sgx_rsa3072_verify

o Sgx_create_rsa_key_pair

e SgX_create_rsa_privl_key

e SgX_create_rsa_priv2_key

e SgX_create_rsa_pub1_key

« sgx_free rsa_key

e Sgx_rsa_priv_decrypt_sha256
e Sgx_rsa_pub_encrypt_sha256
« sgx_calculate_ecdsa_priv_key
e sgx_ecc256_calculate_pub_from_priv
e sgx_hmac_sha256_msg

e sgx_hmac256 init

o sgx_hmac256_update

e sgx_hmac256_final

e sgx_hmac256 close

e sgx_sha384_msg

e sgx_sha384 init

o sgx_sha384_update

e sgx_sha384 get hash

o sgx_sha384_close

If you need additional cryptographic functionality, you can use the Intel® Integ-
rated Performance Primitives (Intel® IPP) Cryptography library. The Intel®

IPP Cryptography 2021 Update 3 is linked to sgx tcrypto.lib and its

APl is directly accessible. The Intel® IPP Cryptographic header files are located
in [Intel SGX SDK Install Path]include\ipp.The Intel®

IPP Cryptographic library is included in the SDK under the Community Licens-

ing.
The trusted cryptography library is based on an underlying general-purpose
cryptographic library: Intel® Integrated Performance Primitives (Intel® IPP)

Cryptography library or Intel® Software Guard Extensions SSL cryptographic
library (Intel® SGX SSL).

-148 -

https://software.intel.com/en-us/articles/free_ipp

Intel® Software Guard Extensions Developer Reference for Windows* OS

The default build uses precompiled, optimized libraries, which include Intel®
IPP libraries. In addition, the Intel® IPP Cryptographic header files are located
in [Intel SGX SDK Install Path]include/ipp.If youwant to use
Intel® SGX SSL instead of Intel® IPP you should use the non-optimized code
implementation. Follow the README.md for detailed instructions.

If you need additional cryptographic functionality, you can use the general-pur-
pose cryptographic library, and its corresponding header files. The underlying
trusted libraries are linked into 1ibsgx tcrypto.a.

Directly accessing Intel® SGX SSL APl is possible after updating the Enclave
EDL and the Application project with the requirements described in Intel®
SGX SSL Developer Guide, section 2.2. Using Intel® SGX SSL Library.

NOTE

To get internal OpenSSL* error codes, you need to build sgx tcryptoin
DEBUG mode and declare extern unsigned long openssl last err,
which holds OpenSSL error code upon failure.

See more information at the Intel® Software Guard Extensions SSL cryp-
tographic library GitHub* repository.

Known limitations:

o Intel SGX SSL library registers a CPUID exception handler which handles
CPUID exceptions on certain leaves:
. o leaf Ox0
o leaf Ox1
o leaf Ox4, sub leaf Ox0
o leaf 0x7, sub leaf Ox0
« Enclaves using one of the mentioned leaves may have a different beha-
vior upon moving from Intel IPP to Intel SGX SSL.
o When running sgx-gdb on an enclave built with Intel SGX SSL, several
SIGILL signals might be raised (since OpenSSL code has some cpuid
instruction calls), gdb continue will continue executing your program.

NOTE
See more information on cryptography in Intel® Integrated Performance Prim-
itives Cryptography Developer Reference.

-149 -

https://github.com/intel/intel-sgx-ssl/blob/master/Linux/package/docs/Intel(R) Software Guard Extensions SSL Library Linux Developer Guide.pdf
https://github.com/01org/intel-sgx-ssl
https://software.intel.com/en-us/intel-ipp-support/documentation

Intel® Software Guard Extensions Developer Reference for Windows* OS

Trusted Key Exchange Functions

These functions allow an ISV to exchange secrets between its server and its
enclaves. They are used in concert with untrusted Key Exchange functions.

e SgX_ra_init

e SgX_ra_init_ex
o sgx_ra_get_keys
e sgx_ra_close

Intel® Protected File System Library

Intel® Protected File System Library provides protected files API for Intel®
SGX enclaves. It supports a basic subset of the regular C file APl and enables
you to create files and work with them as you would normally do from a reg-
ular application.

With this API, the files are encrypted and saved on the untrusted disk during a
write operation, and they are verified for confidentiality and integrity during a
read operation.

To encrypt a file, you should provide a file encryption key. This key isa 128
bits key, and is used as a key derivation key, to generate multiple encryption
keys. According to “NIST Special Publication 800-108 - Recommendation for
Key Derivation Using Pseudorandom Functions”: “The key that is input to a key
derivation function is called a key derivation key. To comply with this Recom-
mendation, a key derivation key shall be a cryptographic key (see Section 3.1).
The key derivation key used as an input to one of the key derivation functions
specified in this Recommendation can be generated by an approved cryp-
tographic random bit generator (e.g., by a deterministic random bit generator
of the type specified in [5]), or by an approved automated key-establishment
process (e.g., as defined in [1] and [2])". For more details, please refer to NIST
SP 800-108 document.

Another option is to use automatic keys derived from the enclave sealing key
(see disadvantages of this approach in the topic Using the Protected FS Auto-
matic Keys API).

» sgx_fopen
» sgx_fopen_auto_key
» sgx_fclose
o sgx_fread
o sgx_fwrite

- 150 -

http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf

Intel® Software Guard Extensions Developer Reference for Windows* OS

o sgx_fflush

o sgx_ftell

« sgx_fseek

o sgx_feof

« sgx_ferror

e sgx_clearerr

e SgX_remove

» sgx_fexport_auto_key
» sgx_fimport_auto_key
» sgx_fclear_cache

Protected FS Usage Limitation

Since the Protected Files have meta-data embedded in them, only one file
handle can be opened for writing at a time, or many file handles for reading.
OS protection mechanism is used for protecting against accidentally opening
more than one ‘write’ file handle. If this protection is bypassed, the file will get
corrupted. An open file handle can be used by many threads inside the same
enclave, the APIs include internal locks for handling this and the operations
will be executed by one.

Protected FS Error Codes

The Protected File System (FS) API tries to preserve the original C file API
errors. A local errno (enclave internal) is also set for APIs that require this
according to the original C file APl documentation.

When the Protected FS APl is accessing the OS file system, if an error is
returned, that error will be provided back to the caller of the Protected FS
API. In addition, when possible, it returns an EXXX error code for internal
errors (for example, the EACCES error code is returned when trying to write a
file that was opened as read-only, or ENOMEM is returned when an internal
attempt to allocate memory fails). Several special error codes were added, like
SGX ERROR FILE NAME MISMATCH, for the cases when the current file
name does not match the internal file name. You can find these error codes
and their explanationsin sgx _error.h.

Protected FS Application Layout

The following figure demonstrates how the Protected File System (FS) works
inside an Intel® SGX application:

-151 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

/ Ring 3 Application hY

Untrusted part / SGX enclave \

trusted
application code

Untrusted

application code

SGX ProtectedFS

SGX Protected FS SGX Protected FS
untrusted library trusted library

o

Figure 23 Protected File System Layout

To use the Intel SGX Protected File System libraries:

1. The enclave must be linked with sgx tprotected fs.lib

2. The application must be linked with sgx _uprotected fs.lib

3. The enclave’s EDL file must ‘import’ all the functions from sgx tpro-
tected fs.edl a

4. The source files should ‘include’ sgx_tprotected fs.h

Protected FS S3/S4 Important Note

To enhance the performance of the Protected File System, cache is used to
save the user’'s data inside the enclave, and only when the cache is full it is
flushed to disk.

-152 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

In case of S3/S4 transitions, data in the cache will be lost (the entire enclave is
los). Therefore, all file handles must be flushed or closed before entering
S3/S4.If no action is taken, the file integrity is not harmed, only the latest writ-
ten data that was not flushed will be lost.

Using the Protected FS Automatic Keys API

Automatic keys are derived from the enclave sealing key (with MRSIGNER), so
the files are bound to all the enclaves signed by the same signer on this par-
ticular machine. To transfer a file from one machine to another, you should fol-
low the key export and import procedure below. There are several cases when
using automatic keys is not recommended.

« Disaster recovery - trying to open files created on one machine on a dif-
ferent machine will fail (unless you follow the procedure described
below). Therefore, automatic disaster recovery may not work properly.

« VM migrations — currently, Intel® SGX does not support automatic
enclave keys transfer in VM migration. Therefore, enclaves running on
servers that use VM migrations cannot use the auto key API.

File Transfer with the Automatic Keys API
For files that were created with sgx fopen auto key,to transfer afile

from one enclave to another, or to another enclave on a different machine, fol-
low this procedure:

1. Close all open handles to the file.

2. Callthe sgx fexport auto key API This APl returns the last encryp-
tion key that was used to encrypt the meta-data node of the file.

3. Transfer the file to the destination enclave, and provide the key in a safe
method to that enclave.

4. Callthe sgx fimport auto key APIL This APl will re-encrypt the
meta-data node with a new encryption key, derived from the local
enclave seal key.

5. Open the file with sgx fopen auto key asusual.

Protected FS Security Non-Objectives

In order to mitigate file swapping attacks (with two valid files), file names are
checked during a file open operation (verifies that the current name is equal
to the file name the file was created with). However, if two files are created
with the same file name, there is no way to protect against such a swapping
attack.

-153 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Since the files are saved in the regular FS, there is no protection against mali-
cious file deletion or modification — this will only be detected when trying to
read or write the modified section from the file (decryption will fail).

There are several things that are not protected when using the Protected FS
API, and anyone who can access the OS can see them:

File name

File size (up to 4KB granularity)
File modification date

Key type (user or auto)

Usage patterns

Read/Write offsets

ok whn =

If any of those items might expose sensitive information, and help a potential
attacker, the enclave developer should add defense mechanisms on their own
to protect against this. For example, an implementation of a “secure browser”
should not save the ‘cookies’ with the names of their related websites,
because an attacker can learn from that the user’s browsing history.

TCMalloc Library

The Intel® Software Guard Extensions SDK includes a trusted version of the
TCMalloc library. The library is named sgx_tcmalloc,and can only be used
inside an enclave. sgx_tcmalloc provides high performance memory alloc-
ation and deallocation functions that are ported from gperftools-2.7:

e malloc

o free

e realloc
e calloc

e memalign

Do the following to enable TCMalloc in Intel® SGX:

1.Set the enclave project's Global Heap Size value equal or larger than
0xA00000.

The Global Heap Size setting path:

enclave project->Intel® SGX Configuration->Enclave Set-
tings->Global Heap Size

-154 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Enclave Settings

Basic Settings

Product ID

Thread Stack Size |(ed0000

1L

Thread Mumber 10

Figure 24 Global Heap Size

ISV SVN D
xAD0000 |

Global Heap Size e ADDOOD

Thread Bound Policy | Bound w

Advanced. ..

QK Cancel

2.Add sgx_tcmalloc.lib into the target enclave project's Additional

Dependencies option.

The Additional Dependencies setting path:

enclave project->Properties->Linker->Input->Additional

Dependencies

Additicnal Dependencies

Ege_trts.lib
sgy_temalloc.lib
sgu_tstde.lib
sgu_tservicelib
sgu_toolib
sgu_terypto.lib

Evaluated value:

sgy_trts.lib
sgy_tcmalloc.lib
sgu_tstde.lib
sgu_tservicelib
sgu_toolib
sgu_tcrypto.lib

Figure 25 Additional Dependencies

- 155 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

NOTE:

The sgx _tcmalloc.lib must be added before sgx tstdc.lib,or
dlmalloc will be used.

Enclave Dynamic Memory Management Library

The Intel® SGX SDK includes a trusted library, sgx _tedmm.1lib, that
provides support for modifying the permissions of committed pages in an
enclave. Intel®* SGX EDMM behavior is only available on Intel® SGX 2.0 hard-
ware platforms with 2.0 Platform Software and Intel® SGX 2.0-

capable Windows* OS.

An Intel® SGX EDMM-capable enclave opts-in to Intel® SGX 2.0 behavior by
linking against the sgx tedmm library and importing the file sgx_ tedm-
m.edl.In addition to supporting explicit requests to modify page per-
missions, this enclave will automatically modify any RWX code pages to RX
after relocation completes. An Intel® SGX EDMM-capable enclave will also
execute on a system without support for Intel® SGX 2.0, but will not be able to
perform Intel® SGX EDMM operations. The Intel® SGX EDMM APIs will report
SGX_ERROR_FEATURE_NOT_SUPPORTED in this situation.

Update Project Settings for Enclave Project

To create an Intel® SGX EDMM-capable enclave, adjust your Enclave Project
settings to add the Intel® SGX EDMM library.

Linker->Input->Additional Dependencies: Add sgx tedmm.lib

Import Intel® SGX EDMM EDL file

The Intel® SGX EDMM EDL file should be imported by the enclave EDL file as
shown in the example. Note including this edl file will expose an additional
OCALL for the enclave.

enclave {
from "sgx tedmm.edl" import *;
trusted {
b
untrusted {
}i
b

EDMM Library API

» sgx_virtual_protect

-156 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Switchless Calls Library

The untrusted portion of the Switchless Calls is integrated into the uRTS lib-
rary. The trusted part is provided by sgx_tswitchless.lib library. The trusted
library does not expose any API functions. It just enables the Switchless Calls
feature inside the enclave.

Developers can enable Switchless Calls using the ‘transition_using_threads’
keyword in the enclave EDL file .

At runtime, the enclave must be created using the sgx create enclave
ex API, providing a Switchless Calls configuration structure.

Protected Code Loader Library

The untrusted portion of Intel® SGX PCL is integrated into the uRTS library.
The trusted part is provided by sgx pcl.1lib. The trusted library does not
expose any APl to the ISV portion of the enclave. See 'Integrating

Intel® SGX PCL with an existing Intel® SGX solution' above for a detailed
description of how these libraries are used. Intel® SGX PCL is not supported in
simulation mode.

Function Descriptions

This topic describes various functions including their syntax, parameters,
return values, and requirements.

NOTE

When an API function lists an EDL in its requirements, users need to explicitly
import such library EDL file in their enclave's EDL.

sgx_create_enclave

Loads the enclave using its file name and initializes it using a launch token.

sgx_create enclaveisamacroforthe sgx create enclavea(ANSI)
or sgx create enclavew (Unicode) function.

The compiler will use the Unicode version if UNICODE is defined in the pro-
ject.

Syntax

sgx status t sgx create enclave(

const char *file name,
const int debug,

-157 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_launch token t *launch token,
int *launch token updated,
sgx_enclave id t *enclave id,

sgx misc attribute t *misc_attr

) ;

Parameters
file_name [in]

Name or full path to the enclave image. This parameter is identical to the
lpFileName parameter in CreateFile(). If the project is using Unicode char-
acter set, file name should be an Unicode string. If the project is using
Multi-Byte character set, file_name should be an ANSI string.

debug [in]
The valid value is O or 1.

O indicates to create the enclave in non-debug mode. An enclave created in
non-debug mode cannot be debugged.

1 indicates to create the enclave in debug mode. The code/data memory
inside an enclave created in debug mode is accessible by the debugger or
other software outside of the enclave and thus is not under the same memory
access protections as an enclave created in non-debug mode.

Enclaves should only be created in debug mode for debug purposes. A helper
macro SGX DEBUG_FLAG is provided to create an enclave in debug mode. In
release builds, the value of SGX DEBUG FLAG is 0. In debug and pre-release

builds, the value of SGX DEBUG FLAG is 1 by default.

launch_token [in/out]

Pointer to an sgx_launch_token_t object used to initialize the enclave to be
created. Must not be NULL. The caller can provide an all-O buffer as the sgx_
launch_token_t object, in which case, the function attempts to create a valid
sgx_launch_token_t object and store it in the buffer. You should store the sgx_
launch_token_t object and re-use it in future calls to create the same enclave.
Certain platform configuration changes can invalidate a previously stored sgx_
launch_token_t object. If the token provided is not valid, the function attempts
to update it to a valid one.

launch_token_updated [out]

-158 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The output is 0 or 1. 0 indicates the launch token has not been updated. 1
indicates the launch token has been updated.

enclave_id [out]

Pointer to an sgx_enclave_id_t that receives the enclave ID or handle. Must
not be NULL.

misc_attr [out, optional]

Pointer to an sgx_misc_attribute_t structure that receives the misc select and
attributes of the enclave. This pointer may be NULL if the information is not
needed.

Return value

SGX_SUCCESS

The enclave is loaded and initialized successfully.
SGX_ERROR_INVALID_ENCLAVE

The enclave file is corrupted.

SGX_ERROR_INVALID_PARAMETER

The ‘enclave_id’, ‘updated’, or ‘token’ parameter is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete sgx create enclave().
SGX_ERROR_ENCLAVE_FILE_ACCESS

The enclave file cannot be opened. Possible reasons: the enclave file is not
found or you have no privilege to access the enclave file.

SGX_ERROR_INVALID_METADATA
The metadata embedded within the enclave image is corrupted or missing.
SGX_ERROR_INVALID_VERSION

The enclave metadata version (created by the signing tool) and the untrusted
library version (URTS) do not match.

SGX_ERROR_INVALID_SIGNATURE
The signature for the enclave is not valid.
SGX_ERROR_OUT_OF_EPC

-159 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The protected memory has run out. Possible reasons: you are creating too
many enclaves, the enclave requires too much memory, or one of the Archi-
tecture Enclaves for this operation cannot be loaded.

SGX_ERROR_NO_DEVICE

The Intel® SGX device is not valid. This may be caused by the Intel® SGX driver
being disabled or not installed.

SGX_ERROR_MEMORY_MAP_CONFLICT

During the enclave creation, a race condition for mapping memory between
the loader and another thread occured. The loader may fail to map virtual
address. Create the enclave again.

SGX_ERROR_DEVICE_BUSY

The Intel® SGX driver or a low level system is busy when creating the enclave.
Create the enclave again.

SGX_ERROR_MODE_INCOMPATIBLE

The target enclave mode is incompatible with the mode of the current RTS.
Possible reasons: a 64-bit application tries to load a 32-bit enclave or a sim-
ulation uRTS tries to load a hardware enclave.

SGX_ERROR_SERVICE_UNAVAILABLE

sgx_create enclave () needsthe AE service to get a launch token. If the
service is not available, the enclave may not be launched.

SGX_ERROR_SERVICE_TIMEOUT
The request to the AE service timed out.
SGX_ERROR_SERVICE_INVALID_PRIVILEGE

The request requires some special attributes for the enclave, but is not priv-
ileged.

SGX_ERROR_NDEBUG_ENCLAVE

The enclave is signed as a product enclave and cannot be created as a debug-
gable enclave.

SGX_ERROR_UNDEFINED_SYMBOL
The enclave contains an import table.

The signing tool should typically report this type of error when the enclave is
built.

- 160 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_MISC
The MiscSelct/MiscMask settings are not correct.
SGX_ERROR_HYPERV_ENABLED

Incompatible versions of Windows* 10 OS and Hyper-V* are detected. Disable
Hyper-V on the target machine.

SGX_ERROR_PCL_ENCRYPTED

Enclave is encrypted. This function cannot be used to load an enclave that was
encrypted by the encryption tool. Use sgx create enclave ex.

SGX_ERROR_FEATURE_NOT_SUPPORTED

Requested feature is not supported. Possible features are KSS, EDMM, and, if
the application is a UWP App, TCS_POLICY_BIND.

SGX_ERROR_UNEXPECTED
Unexpected error is detected.
Description

The sgx create enclave function loads and initializes the enclave using
the enclave file name and a launch token. If the launch token is incorrect, the
function gets a new one and saves it back to the input parameter “token”. In
this case, the parameter “updated” indicates that the launch token is updated.

If both enclave and launch tokens are valid, the function returns a value of
SGX_SUCCESS. The enclave ID (handle) is returned via the enclave_id para-
meter.

The library sgx_urts.lib provides this function to load an enclave with the
Intel® SGX hardware, and it cannot be used to load an enclave linked with the
simulation library. On the other hand, the simulation library sgx _urts
sim.1lib exposes an identical interface which can only load a simulation
enclave. Running in simulation mode does not require Intel® SGX hard-
ware/driver. However, it does not provide hardware protection.

The randomization of the load address of the enclave is dependent on the
operating system. The address of the heap and stack is not randomized and is
at a constant offset from the enclave base address. Different versions of Win-
dows OS may randomize or not randomize the base address. A compromised
loader or operating system (both of which are outside the TCB) can remove
the randomization entirely. The enclave writer should not rely on the ran-
domization of the base address of the enclave.

-161 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Do not call the sgx_create enclave function as part of initialization of a
DLL. Forinstance, sgx _create enclave hangs whenitis called from the
global object constructor of a C++ class in a DLL.

Requirements

Header sgx_urts.h
Library sgx_urts.liborsgx urts sim.lib (simulation)

sgx_create_enclave_ex
Loads the enclave using its file name and initializes it using a launch token.

Enables extended features, Intel® SGX PCL, Switchless Calls initialization, and
Key Separation & Sharing (KSS).

sgx_create enclave exisamacroforthe sgx create enclave exa
(ANSI) or sgx _create enclave exw (Unicode) function.

The compiler uses the Unicode version if UNICODE is defined in the project.
Syntax

sgx _status t sgx create enclave ex(

const char *file name,

const int debug,

sgx_ launch token t *launch token,
int *launch token updated,
sgx_enclave id t *enclave id,
sgx_misc_attribute t *misc_attr,
const uint32 t ex features,

const void* ex features p[32]

)

Parameters
file_name [in]

Name or full path to the enclave image. This parameter is identical to the
lpFileName parameter in CreateFile(). If the project is using the Unicode char-
acter set, file name should be a Unicode string. If the project is using Multi-
Byte character set, file_name should be an ANSI string.

debug [in]

The valid value is O or 1.

-162 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

0 indicates creating the enclave in a non-debug mode. An enclave created in a
non-debug mode cannot be debugged.

1 indicates creating the enclave in a debug mode. The codeor data memory
inside an enclave created in a debug mode is accessible by a debugger or
another software outside the enclave. Thus, this enclave is not under the same
memory access protections as a non-debig enclave.

You should create enclaves in the debug mode for debug purposes only. To
create a debuggable enclave, you can use a helper macro SGX DEBUG_FLAG.
In release builds, the value of SGX DEBUG FLAG is O.In debug and pre-
release builds, the value of SGX DEBUG_FLAG is 1 by default.

launch_token [in/out]

Pointer to an sgx_launch_token_t object used to initialize the enclave to be
created. Must not be NULL. You can provide an all-O buffer as the sgx_launch_
token_t object, in which case, the function attempts to create a valid sgx_
launch_token_t object and store it in the buffer. You should store the sgx_
launch_token_t object and re-use it in future calls to create the same enclave.
Certain platform configuration changes can invalidate a previously stored sgx_
launch_token_t object. If the token provided is not valid, the function attempts
to update it to a valid one.

launch_token_updated [out]

The output is O or 1. 0 indicates that the launch token has not been updated.
1 indicates that the launch token has been updated.

enclave_id [out]

Pointer to an sgx_enclave_id_t that receives the enclave ID or handle. Must
not be NULL.

misc_attr [out, optional]

Pointer to an sgx_misc_attribute_t structure that receives the misc select and
attributes of the enclave. This pointer can be NULL if the information is not
needed.

ex_features [in]

Bitmask defining the extended features to activate on the enclave creation.
Bit [0] — enable the Intel® SGX PCL.

Bit [1] — enable Switchless Calls.

Bit [2] - enable Key Separation & Sharing (KSS).

-163 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Bits [3:31] — reserved, must be 0.
ex_features_p [in]

Array of pointers to extended feature control structures. The index of the
extended feature control structure in the array is the same as the index of the
feature enable bit in ex_features.

ex_features_p[0] - pointer to an Intel® SGX PCL sealed key.
ex_features_p[1] - pointer tothe sgx uswitchless config t structure.
ex_features_p[2] - pointer to the sgx_kss_config_t structure.
ex_features_p[3:31] - reserved, must be NULL.

Return value

SGX_SUCCESS

Enclave is loaded and initialized successfully.
SGX_ERROR_INVALID_ENCLAVE

Enclave file is corrupted.

SGX_ERROR_INVALID_PARAMETER

‘enclave_id’, ‘'updated’, or ‘token’ parameter is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete sgx create enclave ex().
SGX_ERROR_ENCLAVE_FILE_ACCESS

Enclave file cannot be opened. Possible reasons: the file is not found or you
have no privilege to access the file.

SGX_ERROR_INVALID_METADATA
Metadata embedded within the enclave image is corrupted or missing.
SGX_ERROR_INVALID_VERSION

Enclave metadata version (created by the signing tool) and the untrusted lib-
rary version (URTS) do not match.

SGX_ERROR_INVALID_SIGNATURE
Signature for the enclave is not valid.

SGX_ERROR_OUT_OF_EPC

-164 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Protected memory has run out. Possible reasons: you are creating too many
enclaves, the enclave requires too much memory, or one of the Architecture
Enclaves for this operation cannot be loaded.

SGX_ERROR_NO_DEVICE

Intel® SGX device is not valid. Possible reasons: the Intel® SGX driver is dis-
abled or not installed.

SGX_ERROR_MEMORY_MAP_CONFLICT

During enclave creation, a race condition for mapping memory between the
loader and another thread occurred. The loader may fail to map virtual
address. Create the enclave again.

SGX_ERROR_DEVICE_BUSY

Intel®°SGX driver or a low level system is busy when creating the enclave.
Create the enclave again.

SGX_ERROR_MODE_INCOMPATIBLE

Target enclave mode is incompatible with the mode of the current RTS.
Reason examples: a 64-bit application tries to load a 32-bit enclave or a sim-
ulation uRTS tries to load a hardware enclave.

SGX_ERROR_SERVICE_UNAVAILABLE

sgx_create enclave () needsthe AE service to get a launch token. If the
service is not available, the enclave may not be launched.

SGX_ERROR_SERVICE_TIMEOUT
Request to the AE service timed out.
SGX_ERROR_SERVICE_INVALID_PRIVILEGE

Request requires some special attributes for the enclave, but it does not priv-
iledge.

SGX_ERROR_NDEBUG_ENCLAVE

Enclave is signed as a product enclave and cannot be created as a debuggable
enclave.

SGX_ERROR_UNDEFINED_SYMBOL
Enclave contains an import table.

The signing tool should typically reports this type of error when the enclave is
built.

-165 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_MISC
The MiscSelct or MiscMask settings are not correct.
SGX_ERROR_HYPERV_ENABLED

Incompatible versions of Windows* 10 OS and Hyper-V* are detected. Disable
Hyper-V on the target system.

SGX_ERROR_PCL_ENCRYPTED

Enclave is encrypted but input parameters do not include the required con-
tent (e.g. sealed decryption key blob).

SGX_ERROR_PCL_NOT_ENCRYPTED

Enclave is not encrypted but input parameters include content for enclave
decryption.

SGX_ERROR_FEATURE_NOT_SUPPORTED
Desired feature is not supported.
SGX_ERROR_UNEXPECTED

Unexpected error is detected.

Description

The sgx create enclave ex function loads and initializes the enclave as
described by sgx create enclave.Inaddition, sgx create enclave
ex activates extended features, based on the input provided inex fea-
tures and ex features p parameters.

The following extended features are currently supported:

« Intel® SGX Protected Code Loader that enables loading encrypted
enclaves.

o Switchless Calls. For more information, see the Switchless Calls section.

« Key Separation & Sharing (KSS). You can specify a different sgx_kss_con-
fig_t structure to load a KSS enabled enclave to have additional control
options over the key derivation process. The KSS enabled enclave
should be signed with EnableKSS set to 1 in the configuration file.

The described extended features are independent but can also work
together.

Requirements

-166 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_urts.h

Library sgx_urts.liborsgx urts sim.lib (simulation)

sgx_destroy_enclave

The sgx_destroy enclave function destroys an enclave and frees its asso-
ciated resources.

Syntax
sgx status t sgx destroy enclave (

const sgx_enclave id t enclave_ id

) ;

Parameters

enclave_id [in]

An enclave ID or handle that was generated by sgx_create_enclave.
Return value

SGX_SUCCESS

The enclave was unloaded successfully.
SGX_ERROR_INVALID_ENCLAVE_ID

The enclave ID (handle) is not valid. The enclave has not been loaded or the
enclave has already been destroyed.

Description

The sgx destroy enclave function destroys an enclave and releases its
associated resources and invalidates the enclave ID or handle.

The function will block until no other threads are executing inside the enclave.

It is highly recommended that the sgx destroy enclave function be
called after the application has finished using the enclave to avoid possible
deadlocks.

The library sgx _urts.lib exposes this function to destroy a previously cre-
ated enclave in hardware mode, while sgx_urts_ sim.1lib providesasim-
ulative counterpart.

See more details in Loading and Unloading an Enclave.

-167 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Requirements

Header sgx_urts.h

Library sgx_urts.liborsgx urts sim.lib (simulation)

sgx_enum_enclaves

Enumerates the process IDs that have loaded enclaves, as well as their cor-
responding enclave IDs and enclave size.

Syntax
sgx status t sgx enum enclaves (

EnclaveEnumArrayType* pEnclaveEnum,
DWORD cb,
DWORD* pBytesNeeded;

)

Parameters
pEnclaveEnum [out]

Pointer to an array of structures containing process ID, enclave ID and enclave
size.

cb [in]
Size allocated for the array of structures of type EnclaveEnumArrayType.
pBytesNeeded [out]

The number of bytes required to store the complete array of structures of
type EnclaveEnumArrayType.

Return value
SGX_ERROR_FEATURE_NOT_SUPPORTED

This APl has been deprecated and is not longer supported.

Description

The sgx_enum enclaves function has been deprecated and is not longer
supported.

Requirements

Header sgx_urts.h

Library sgx_urts.lib

-168 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_select_att_key_id
sgx_select att key idused to select the attestation key.
Syntax
sgx_status t sgx select att key id(
const uint8 t *p att key id list,
uint32 t att key idlist size,

sgx_att key id t *p att key id

) ;

Parameters

p_att_key _id_list [in]

List of the supported attestation key IDs provided by the quote verifier.
att_key id_list_size

The size of p_att key id list.

p_att_key_id[out]

Pointer to the selected attestation key. Cannot be NULL.
Return value

SGX_SUCCESS

All outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Thep att key id list isnot correct, list header isincorrect, the number
of key IDs in the list exceeds the maximum or p_att_key_id pointer is invalid.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID

The platform quoting infrastructure does not support the key described.
SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

You can select the attestation key id from the list provided by the off-platform
Quote verifier. Calling sgx_select att key idisthe first thing an Intel®

- 169 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Software Guard Extensions application does when getting a quote of an
enclave. Thencall sgx init quote exto generate or obtain the attestation
key. Calculate quote size by Calling sgx _get quote size ex.At last, call
sgx_get quote exto generate the quote.

The function will return a sgx_att_key_id_t of attestation keys supported both
by the platform and the relying party. If the platform cannot support one in
the list, the APl will return error SGX_ERROR_UNSUPPORTED_ATT_KEY_ID. If
the caller doesn't supply a list (p_att_key_id_list == NULL), then the platform
software deem the relying party support all kinds of attestation keys. If there
are multiple attestation keys are supported by both the platform and the rely-
ing party, in such case, if the "default quoting type" in registry(HKEY_LOCAL_
MACHINE\SOFTWARE\\Inte\SGX_PSW\AESMQuotingType) is one of them,
then the "default quoting type" will be returned; otherwise, the platform soft-
ware will choose one of them according to its internal logic.

Requirements

Header sgx_uae quote ex.h
Library sgx_quote ex.liborsgx quote ex sim.lib (sim-
ulation)

sgx_init_quote

sgx_1init quote returnsinformation needed by an Intel® SGX application
to get a quote of one of its enclaves.

Syntax
sgx status t sgx init quote (

sgx_target info t *p target info,
sgx_epid group id t *p gid
) ;

Parameters
p_target_info [out]

Allows an enclave for which the quote is being created, to create report that
only QE can verify.

p_gid [out]
ID of platform’s current Intel® EPID group.

-170 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Return value

SGX_SUCCESS

All of the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.
SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.

SGX_ERROR_BUSY

The requested service is temporarily not available
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.
SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED
Intel® SGX needs to be updated.
SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED
An unexpected error was detected.

Description

-171 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Calling sgx_init quote is the first thing an Intel® Software Guard Exten-
sions application does in the process of getting a quote of an enclave. The con-
tentofp target info changes when the QE changes. The content of p_gid
changes when the platform SVN changes.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this APl if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_uae_epid.h
Library sgx_epid.libor sgx epid sim.lib (simulation)

sgx_init_quote_ex

Returns information required by an Intel® SGX application to get a quote of
one of its enclaves.
Syntax
sgx status t sgx init quote ex(
const sgx_att key id t *p att key id,
sgx_target info t *p target info,
size t* p pub key id size,

uint8 t* p pub key id

)

Parameters
p_att_key_id[in]

Selected attestation key ID returned by sgx_select att key id.Cannot
be NULL.

p_target_info [out]

Allows an enclave for that the quote is being created to create the report that
only QE can verify.

p_pub_key id_size [out]

This parameter can be used in two ways. If p_pub_key idis NULL, the API
returns the buffer size required to hold the attestation public key ID. If p
pub_ key idisnotNULL,p pub key size mustbe large enough to hold
the return attestation public key ID. Must not be NULL.

p_pub_key_id [out]

-172 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

This parameter can be used in two ways. If it is passed inas NULLand p_pub
key id size is not NULL, the APl returns the buffer size required to hold
the attestation public key ID. If the parameter is not NULL, it must point to the
buffer that is at least as long as the value passed inby p pub key id.

Return value

SGX_SUCCESS

All of the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Ifp pub key id size, p att key idis NULL, any of the other pointers
are invalid. If p_pub_key size isnot NULL, any of the other pointers are
invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

Request to the AE service timed out.
SGX_ERROR_OUT_OF EPC

Not enough EPC memory is available to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED
Intel® SGX needs to be updated.
SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID
The platform quoting infrastructure does not support the key described.

SGX_ERROR_ATT_KEY_CERTIFICATION_FAILURE

-173 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Failed to generate and certify the attestation key.

SGX_ERROR_UNEXPECTED
Unexpected error was detected.
Description

The application calls this API to request the owner of the selected platform
attestation key to generate or obtain the attestation key.

If SGX_ERROR_BUSY is returned, you should wait (typically, several seconds to
tens of seconds) and retry this API.

Requirements

Header sgx_uae quote ex.h
Library sgx_quote ex.liborsgx quote ex sim.lib (sim-
ulation)

sgx_calc_quote_size
sgx_calc_quote_ size returnsthe required buffer size for the quote.
Syntax
sgx status t sgx calc quote size(
const uint8 t *p sig rl,

uint32 t sig rl size,
uint32 t *p quote size

) ;

Parameters

p_sig_rl [in]

Optional revoke list of signatures, can be NULL.
sig_rl_size [in]

Sizeofp sig rl,inbytes.Ifp sig rlisNULL thensig rl size willbe
0.

p_quote_size [out]
Indicate the size of quote buffer.

Return value

-174 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_SUCCESS
All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The p _quote size pointerisinvalid or the other input parameters are cor-
rupted.

Description

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx_calc quote,
call sgx calc quote size first to calculate the buffer size and then alloc-
ate enough memory for the quote.

Requirements

Header sgx_uae epid.h
Library sgx_epid.liborsgx epid sim.lib (simulation)

sgx_get_quote_size

sgx_get quote sizeisdeprecated.Use the sgx calc quote
size function instead.

sgx_get quote size returnsthe required buffer size for the quote.
Syntax
sgx status t sgx get quote size(

const uint8 t *p sig rl,
uint32 t *p quote size

) ;

Parameters

p_sig_rl [in]

Optional revoke list of signatures, can be NULL.
p_quote_size [out]

Indicate the size of quote buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

-175 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_PARAMETER

The p quote size pointerisinvalid or the other input parameters are cor-
rupted.

Description

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx_get quote,
call sgx get quote size first to get the buffer size and then allocate
enough memory for the quote.

Requirements

Header sgx_uae epid.h
Library sgx_epid.liborsgx epid sim.lib (simulation)

sgx_get_quote_size_ex

sgx_get quote size ex returnsthe required buffer size for the quote.
Syntax

sgx_status t sgx get quote size ex(

const sgx_att key id t *p att key id,
uint32 t *p quote size

) ;

Parameters
p_att_key_id[in]

Selected attestation key ID returned by sgx_select att key id.Cannot
be NULL.

p_quote_size [out]

Indicate the size of quote buffer. Cannot be NULL.
Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

-176 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The p quote size pointerisinvalid or the other input parameters are cor-
rupted.

SGX_ERROR_ATT_KEY_UNINITIALIZED

The platform quoting infrastructure does not have the attestation key avail-
able to generate quotes. Call sgx _init quote ex again.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID
The platform quoting infrastructure does not support the key described.
Description

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx _get quote
ex,call sgx get quote size ex first to get the buffer size and then alloc-
ate enough memory for the quote.

Requirements

Header sgx_uae quote ex.h
Library sgx_quote ex.liborsgx quote ex sim.lib (sim-
ulation)

sgx_get_quote

sgx_get quote generates a linkable or un-linkable QUOTE.
Syntax

sgx_status t sgx get quote (

const sgx report t *p report,
sgx_quote sign type t quote type,
const sgx spid t *p spid,

const sgx quote nonce t *p nonce,
const uint8 t *p sig rl,

uint32 t sig rl size,
sSgx_report t *p ge report,
Sgx_quote t *p quote,

uint32 t quote size

)
Parameters

p_report [in]

Report of enclave for which quote is being calculated.

-177 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

quote_type [in]

SGX UNLINKABLE SIGNATURE for unlinkable quote or SGX LINKABLE
SIGNATURE for linkable quote.

p_spid [in]
ID of service provider.
p_nonce [in]

Optional nonce, if p_ ge report is not NULL, then nonce should not be NULL
as well.

p_sig_rl [in]
Optional revoke list of signatures, can be NULL.
sig_rl_size [in]

Sizeofp sig rl,inbytes.Ifthep sig rlisNULL thensig rl size
shall be O.

p_qge_report [out]

Optional output. If not NULL, report of QE target to the calling enclave will be
copied to this buffer, and in this case, nonce should not be NULL as well.

p_quote [out]

The major output of get quote, the quote itself, linkable or unlinkable
depending on quote type input. quote cannot be NULL.

quote_size [in]

Indicates the size of the quote buffer. To get the size, user shall call sgx
calc quote size first.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.
SGX_ERROR_AE_INVALID_EPIDBLOB
The Intel® EPID blob is corrupted.
SGX_ERROR_EPID_MEMBER_REVOKED

-178 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.
SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED
Intel® SGX needs to be updated.
SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED
An unexpected error was detected.
Description

Both Intel® EPID Member and Verifier need to know the Group Public Key and
the Intel® EPID Parameters used. These values not being returned by either
sgx_1init quote () orsgx get quote () reflects the reliance on the
Attestation Service for Intel® Software Guard Extensions. With the Attestation
Service in place, simply sending the GID to the Attestation Service (through
the Intel® SGX application and PS) is sufficient for the Attestation Service to
know which public key and parameters to use.

-179 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The purpose of p _ge report is for the ISV enclave to confirm the QUOTE it
received is not modified by the untrusted SW stack, and not a replay. The
implementation in QE is to generate a REPORT targeting the ISV enclave (tar-
getinfofromp report),withthe lower 32Bytesin report.data =
SHA256 (p_nonce| |p_quote).The ISV enclave can verify thep ge
report and report.data to confirm the QUOTE has not be modified and
is not areplay. It is optional.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this APl if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_uae epid.h

Library sgx_epid.liborsgx epid sim.lib (simulation)

sgx_get_quote_ex

sgx_get quote ex takesthe application enclave REPORT and generates a
QUOTE.

Syntax

sgx _status_ t sgx get quote ex(
const sgx report t *p app report,
const sgx_att key id t *p att key id,
sgx _ge report info t *p ge report info,

sgx_quote t *p quote,
uint32 t quote size

) ;

Parameters

p_app_report [in]

Report of the enclave for that the quote is being calculated. Cannot be NULL.
p_att_key _id[in]

Selected attestation key ID returned by sgx_select att key id.Cannot
be NULL.

p_qge_report_info [in, out]

Optional input and output contain the information required to generate a
REPORT that can be verified by the application enclave.

p_quote [out]

- 180 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The major output of sgx get quote ex,the quote itself cannot be NULL.
quote_size [in]

Indicates the size of the quote buffer. To get the size, user shall call sgx
get quote size exfirst

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

Request to AE service timed out.
SGX_ERROR_OUT_OF EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED
Intel® SGX needs to be updated.
SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID
The platform quoting infrastructure does not support the key described.

SGX_ERROR_ATT_KEY_UNINITIALIZED

-181 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The platform quoting infrastructure does not have the attestation key avail-
able to generate quotes. Call sgx_init quote ex again.

SGX_ERROR_UNEXPECTED
Unexpected error was detected.
Description

The function takes the application enclave REPORT that will be converted into
a quote after the QE verifies the REPORT. After the verification, the QE signs
the REPORT with the platform attestation key matching the selected attest-
ation key ID. If the key is not available, this APl may return an error SGX_ATT _
KEY NOT INITIALIZED depending on the algorithm. In this case, call sgx_
init_quote_ex to re-generate and certify the attestation key.

The purpose of ge _reportinp ge report info isfor the ISV enclave to
confirm the QUOTE it received is not modified by the untrusted SW stack, and
not a replay. The implementation in QE is to generate a REPORT targeting the
ISV enclave (app_enclave_target_info fromp app report),with the lower
32Bytesin report.data = SHA256 (nonce| |p _quote) (nonce fromp
app_report). The ISV enclave can verify the ge reportand report.data
to confirm the QUOTE has not been modified and is not a replay. It is optional.

If SGX_ERROR_BUSY is returned, you should wait (typically, several seconds to
tens of seconds) and retry this API.

Requirements

Header sgx_uae quote ex.h
Library sgx_quote ex.liborsgx quote ex sim.lib (sim-
ulation)

sgx_get_supported_att_key id_num

sgx_get suooroted att key id num returnsthe number of supported
attestation key IDs on the platform.

Syntax
sgx_status t sgx get supported att key id num(

uint32 t *p att key id num

) ;

Parameters

-182 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

p_att_key_id_num[out]

Indicate the pointer to the location where the required number will be
returned.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Thep att key id num pointer isinvalid.
SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.
SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

You need to call this function before getting supported attestation key IDs.
The number is variable depending on the platform. You can use the returned
p att key id num to allocate the buffer whose size is sizeof sgx_att
key id ext t*att key id numto hold the supported attestation key

IDs.

Requirements

Header sgx_uae quote ex.h

Library sgx_quote ex.liborsgx quote ex sim.lib (sim-
ulation)

-183 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_get_supported_att_key_ids

sgx_get supported att key ids returnsan array of all supported
attestation key IDs.

Syntax
sgx _status t sgx get supported att key ids(

sgx_att key id ext t *p att key id list,
uint32 t att key id num

) ;

Parameters
p_att_key_id_list [out]

Pointer to the buffer that will contain supported attestation key IDs. The buf-
fer size must be sizeof sgx_att key id ext t*att key id num

att_key_id_num [in]

Indicate the the number of supported attestation key IDs. To get the number,
call sgx_get supported att key id num first.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Thep att key id list pointerisinvalid oratt key id numis not cor-
rect.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_UNEXPECTED

-184 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

An unexpected error was detected.
Description

You can get all supported attestation key IDs on the platform used by aesm
service.

Requirements

Header sgx_uae quote ex.h
Library sgx_quote ex.liborsgx quote ex sim.lib (sim-
ulation)

sgx_ra_get_msg1

sgx_ra_get msgl isused to get the Intel® EPID remote attestation and key
exchange protocol message 1 to send to a service provider. The application
enclave should use sgx_ra init function to create the remote attestation
and key exchange process context, and return to the untrusted code, before
the untrusted code can invoke this function.
Syntax
sgx status t sgx ra get msgl (

sSgx _ra context t context,

sgx_enclave id t eid,

sgx_ecall get ga trusted t p get ga,

sgx_ra msgl t *p msgl

)

Parameters
context [in]

Context returned by the sgx ra init function inside the application
enclave.

eid [in]
ID of the application enclave which is going to be attested.
p_get_ga [in]

Function pointer of the ECALL proxy sgx ra get ga generated by sgx
edger8r. The application enclave should link with sgx_tkey exchange lib-
rary and import sgx_tkey exchange.edl inthe enclave EDL file to expose
the ECALL proxy for sgx_ra get ga.

-185 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

p_msg1 [out]

Message 1 used by the remote attestation and key exchange protocol.
Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.
SGX_ERROR_EPID_MEMBER_REVOKED

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.
SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_INVALID_STATE

The APl is invoked in incorrect order or state.

-186 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED
An unexpected error was detected.
Description

The application also passes in a pointer to the untrusted proxy corresponding
tosgx ra get ga,whichis exposed by the trusted key exchange library.
This reflects the fact that the names of untrusted proxies are enclave-specific.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this APl if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_ukey exchange.h

Library sgx_ukey exchange.libor sgx ukey exchangemt.lib

sgx_ra_get_msg1_ex
sgx_ra get msgl exisused to get the Intel® EPID or ECDSA remote
attestation and key exchange protocol message 1 to send to a service pro-
vider. The application enclave should use sgx ra init ex function to cre-
ate the remote attestation and key exchange process context, and return to
the untrusted code, before the untrusted code can invoke this function.
Syntax
sgx _status t sgx ra get msgl ex(

const sgx_att _key id t *p att key id,

sgx_ra context t context,

sgx_enclave id t eid,

sgx_ecall get ga trusted t p get ga,
sgx _ra msgl t *p msgl

) ;

Parameters
p_att_key _id [in]
Selected attestation key ID returned by sgx_select att key id.

context [in]

-187 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Context returned by the sgx _ra init ex function inside the application
enclave.

eid [in]
ID of the application enclave which is going to be attested.
p_get_ga [in]

Function pointer of the ECALL proxy sgx ra get ga generated by sgx
edger8r. The application enclave should link with sgx tkey exchange lib-
rary and import sgx_tkey exchange.edl inthe enclave EDL file to expose
the ECALL proxy for sgx _ra get ga.

p_msg1 [out]

Message 1 used by the remote attestation and key exchange protocol.
Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.
SGX_ERROR_EPID_MEMBER_REVOKED

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

-188 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

Request to AE service timed out.
SGX_ERROR_INVALID_STATE

The APl is invoked in an incorrect order or state.
SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID

The platform quoting infrastructure does not support the key described.
SGX_ERROR_ATT_KEY_CERTIFICATION_FAILURE

Failed to generate and certify the attestation key.
SGX_ERROR_UNEXPECTED

Unexpected error was detected.

Description

The application also passes in a pointer to the untrusted proxy corresponding
tosgx ra get ga,whichis exposed by the trusted key exchange library.
This reflects the fact that the names of untrusted proxies are enclave-specific.

If SGX_ERROR_BUSY is returned, you should wait (typically, several seconds to
tens of seconds) and retry this API.

Requirements

Header sgx_ukey exchange.h

Library sgx_ukey exchange.libor sgx ukey exchangemt.lib

sgx_ra_proc_msg2

sgx_ra proc msg2 is used to process the remote attestation and key
exchange protocol message 2 from the service provider and generate mes-
sage 3 to send to the service provider. If the service provider accepts mes-
sage 3, negotiated session keys between the application enclave and the
service provider are ready for use. The application enclave can use sgx ra
get keys function to retrieve the negotiated keys and can use sgx_ra

-189 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

close function to release the context of the remote attestation and key
exchange process. If processing message 2 results in an error, the application
should notify the service provider of the error or the service provider needs a
time-out mechanism to terminate the remote attestation transaction when it
does not receive message 3.

Syntax
sgx_status t sgx ra proc msg2(

sgx_ra context t context,

sgx_enclave id t eid,
sgx_ecall proc msg2 trusted t p proc msgZ2,
sgx_ecall get msg3 trusted t p get msg3,
const sgx_ra msg2 t *p msg2,

uint32 t msg2 size,

sgx_ra msg3_t **pp msg3,

uint32 t *p msg3 size

) ;

Parameters

context [in]

Context returned by sgx ra init.

eid [in]

ID of the application enclave which is going to be attested.
p_proc_msg?2 [in]

Function pointer of the ECALL proxy sgx ra proc msg2 trusted t gen-
erated by sgx_edger8r. The application enclave should link with sgx
tkey exchange library and import the sgx tkey exchange.edl inthe
EDL file of the application enclave to expose the ECALL proxy for sgx ra
proc_msgZ.

p_get_msg3 [in]

Function pointer of the ECALL proxy sgx ra get msg3 trusted t gen-
erated by sgx_edger8r. The application enclave should link with sgx
tkey exchange library and import the sgx tkey exchange.edl inthe
EDL file of the application enclave to expose the ECALL proxy for sgx _ra
get msg3.

p_msg2 [in]

sgx_ra msg2 t message 2 from the service provider received by applic-
ation.

-190 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

msg2_size [in]
The length of p_msg2 (in bytes).
pp_msg3 [out]

sgx_ra msg3_ t message 3 to be sent to the service provider. The message
buffer is allocated by the sgx ukey exchange library. The caller should
free the buffer after use.

p_msg3_size [out]

The length of pp_msg3 (in bytes).

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.
SGX_ERROR_AE_INVALID_EPIDBLOB
The Intel® EPID blob is corrupted.
SGX_ERROR_EPID_MEMBER_REVOKED

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.

-191 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.
SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_INVALID_STATE

The APl is invoked in incorrect order or state.
SGX_ERROR_INVALID_SIGNATURE

The signature is invalid.
SGX_ERROR_MAC_MISMATCH

Indicates verification error for reports, sealed data, etc.
SGX_ERROR_KDF_MISMATCH

Indicates key derivation function does not match.
SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED
An unexpected error was detected.
Description

The sgx_ra proc_msg2 processes the incoming message 2 and returns
message 3. Message 3 is allocated by the library, so the caller should free it
after use.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this APl if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_ukey exchange.h

Library sgx ukey exchange.liborsgx ukey exchangemt.lib

SgX_ra_proc_msg2_ex

sgx_ra proc_msg2_ex isused to process the remote attestation and key
exchange protocol message 2 from the service provider and generate mes-
sage 3 to send to the service provider. If the service provider accepts

-192 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

message 3, negotiated session keys between the application enclave and the
service provider are ready for use. The application enclave can use sgx_ra
get keys function to retrieve the negotiated keys and can use sgx_ra
close function to release the context of the remote attestation and key
exchange process. If processing message 2 results in an error, the application
should notify the service provider of the error or the service provider needs a
time-out mechanism to terminate the remote attestation transaction when it
does not receive message 3.

Syntax

sgx _status t sgx ra proc msgZ ex(
const sgx_att key id t *p att key id,
sgx _ra context t context,
sgx_enclave id t eid,
sgx_ecall proc msg2 trusted t p proc msg2,
sgx_ecall get msg3 trusted t p get msg3,
const sgx ra msg2 t *p msg2,
uint32 t msg2 size,
sgx_ra msg3_t **pp msg3,
uint32 t *p msg3 size

)i

Parameters

p_att_key_id[in]

Selected attestation key ID returned from sgx _select att key id.
context [in]

Context returned by sgx_ra init.

eid [in]

ID of the application enclave that is going to be attested.

p_proc_msg2 [in]

Function pointer of the ECALL proxy sgx ra proc msg2 trusted t gen-
erated by sgx_edger8r. The application enclave should link with sgx
tkey exchange library and import the sgx tkey exchange.edl inthe
EDL file of the application enclave to expose the ECALL proxy for sgx ra
proc_msgZ2.

p_get_msg3 [in]

Function pointer of the ECALL proxy sgx _ra get msg3 trusted t gen-
erated by sgx edger8r. The application enclave should link with sgx

-193 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

tkey exchange library and import the sgx tkey exchange.edl inthe
EDL file of the application enclave to expose the ECALL proxy for sgx ra
get msg3.

p_msg2 [in]

sgx_ra msg2 t message 2 from the service provider received by applic-
ation.

msg2_size [in]
The length of p_msg2 (in bytes).
pp_msg3 [out]

sgx_ra msg3_ t message 3 to be sent to the service provider. The message
buffer is allocated by the sgx _ukey exchange library. The caller should
free the buffer after use.

p_msg3_size [out]

The length of pp_msg3 (in bytes).

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.
SGX_ERROR_AE_INVALID_EPIDBLOB
The Intel® EPID blob is corrupted.
SGX_ERROR_EPID_MEMBER_REVOKED

The Intel® EPID group membership has been revoked. The platform is not trus-
ted. Updating the platform and retrying will not remedy the revocation.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

-194 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE
The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT
Request to AE service timed out.
SGX_ERROR_INVALID_STATE

The APl is invoked in an incorrect order or state. Before calling this API, user
should call sgx_ra_get_msg1_ex first.

SGX_ERROR_INVALID_SIGNATURE

The signature is invalid.
SGX_ERROR_MAC_MISMATCH

Indicates verification error for reports, sealed data, etc.
SGX_ERROR_KDF_MISMATCH

Indicates key derivation function does not match.
SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNSUPPORTED_ATT_KEY_ID
The platform quoting infrastructure does not support the key described.
SGX_ERROR_INVALID_ATT_KEY_CERT_DATA

The data returned by the platform library's sgx _get quote configis
invalid.

SGX_ERROR_UNEXPECTED
Unexpected error was detected.
Description

The sgx ra proc msg2 ex processesthe incoming message 2 and returns
message 3. Message 3 is allocated by the library, so the caller should free it
after use.

195 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

If SGX_ERROR_BUSY is returned, you should wait (typically, several seconds to
tens of seconds) and retry this API.

Requirements

Header sgx_ukey exchange.h

Library sgx_ukey exchange.liborsgx ukey exchangemt.lib

sgx_report_attestation_status

sgx_report attestation status reportsinformation from the Intel
Attestation Server during a remote attestation to help to decide whether a
TCB update is required. It is recommended to always call sgx report
attestation status after aremote attestation transaction when it results
in a Platform Info Blob (PIB).

The attestation status indicates whether the ISV server decided to
trust the enclave or not.

o Thevalue pass: 0 indicates that the ISV server trusts the enclave. If the
ISV server trusts the enclave and platform services, sgx report
attestation status will not take actions to correct the TCB that will
cause negative user experience such as long latencies or requesting a
TCB update.

e The value fail: !=0 indicates that the ISV server does not trust the
enclave. If the ISV server does not trust the enclave or platform services,
sgx_report attestation statuswill take all actions to correct
the TCB which may incur long latencies and/or request the application to
update one of the Intel SGX's TCB components. It is the ISV's respons-
ibility to provide the TCB component updates to the client platform.

Syntax

sgx_status t sgx report attestation status (
const sgx platform info t* p platform info
int attestation_ status,

sgx_update info bit t* p update info

) ;
Parameters

p_platform_info [in]

Pointer to opaque structure received from Intel Attestation Server.

-196 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

attestation_status [in]

The value indicates whether remote attestation succeeds or fails. If attestation
succeeds, the value is 0. If it fails, the value will be others.

p_update_info [out]

Pointer to the buffer that receives the update information only when the
return value of sgx_report attestation status iSSGX ERROR
UPDATE NEEDED.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.
SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.
SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_BUSY

This service is temporarily unavailable.
SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

-197 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED
An unexpected error was detected.
Description

The application calls sgx report attestation status afterremote
attestation to help to recover the TCB.

Requirements

Header sgx_uae service.h
Library Sgx _uae service.liborsgx uae service sim.lib
(simulation)

sgx_check_update_status

sgx_check update status reportsinformation from the Intel Attestation
Server during a remote attestation to help to learn whether a TCB update is
available, and whether Intel® EPID provisioning or PSE provisioning/long-term
pairing is or was needed or pending. It is recommended to always call sgx
check update_ status after aremote attestation transaction when it res-
ults in a Platform Info Blob (PIB).

Syntax

sgx status t sgx check update status (
const sgx _platform info t* p platform info,
sgx_update info bit t* p update info,

uint32 t config,
uint32 t* p status

)

Parameters
p_platform_info [in]

Pointer to opaque structure received from Intel Attestation Server. Can be
NULL when TCB is up to date. If it is,thenp update info also needsto be
NULL.

p_update_info [out]

-198 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Pointer to the buffer that receives the update information only when the
return value of sgx check update statusis SGX ERROR UPDATE
NEEDED. Can be NULL.

config [in]

The value indicates whether caller wants to address pending Intel® EPID or
PSE provisioning using the combination of the following bits.

Value Description

bit O: reserved and must be zero.

bit 1: set if caller wants to trigger Intel® EPID provisioning if it is
needed/pending.

bit 2: set if caller wants to trigger PSE provisioning/long-term pairing if it
is needed/pending.

bit 31..3: reserved and must be zero.

if bit[2:1] == 0: never trigger either Intel® EPID or PSE provisioning/long-term pair-
ing.

p_status [out]

The value will be filled as follows:

Value Description

bit O: set if any update is available. Caller can inspect p update infoto
learn details. - -

bit 1: set if Intel® EPID provisioning is or was needed/pending. Set or
cleared independent of config input.

bit 2: set if PSE provisioning/long-term pairing is or was needed/pending.
Set or cleared independent of config input.

bit 31..3: reserved and must be zero.

Can be NULL. If all user wants is to know about updates, the API will return
SGX_ERROR_SERVICE_UNAVAILABLE and fillinp_update info evenifp

status is NULL.

Return value

SGX_SUCCESS

All the outputs are generated successfully.

SGX_ERROR_INVALID_PARAMETER

Any of the pointers are invalid.

-199 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Forexample:p platform info NULLand p update info non-NULL
(can't determine update status w/o PIB). Orp platform info NULL and
config == 0 (nothing to do).

SGX_ERROR_UNSUPPORTED_CONFIG

Any unsupported bits in config input are set.
SGX_ERROR_AE_INVALID_EPIDBLOB

The Intel® EPID blob is corrupted.
SGX_ERROR_UPDATE_NEEDED

Intel® SGX needs to be updated.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

SGX_ERROR_BUSY

This service is temporarily unavailable.
SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

- 200 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The application calls sgx check update status after remote attestation
to help to recover the TCB and learn whether Intel® EPID provisioning or PSE
provisioning/long-term pairing is or was needed/pending.

Requirements

Header sgx_uae service.h
Library Sgx _uae service.liborsgx uae service sim.lib
(simulation)

sgx_get_extended_epid_group_id

The function sgx _get extended epid group id reports which exten-
ded Intel® EPID Group the client uses by default. The key used to sign a Quote
will be a member of the extended Intel® EPID Group reported in this API.

Syntax
sgx_status_ t sgx get extended epid group id(

uint32 t *p extended epid group_ id

) ;

Parameters

p_extended_epid_group_id [out]

The extended Intel® EPID Group ID.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Thep extended epid group id pointerisinvalid.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.

-201 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNEXPECTED
An unexpected error was detected.
Description

The application uses this value to tell the ISV Service Provider which exten-
ded Intel® EPID Group to use during remote attestation.

Requirements

Header sgx_uae service.h
Library Sgx _uae service.liborsgx uae service sim.lib
(simulation)

sgx_get_ps_cap
sgx_get ps cap returns the platform service capability of the platform.

Syntax
sgx_status t sgx get ps cap (

Sgx_ps_cap_t* p sgx _ps_cap

)

Parameters
p_sgx_ps_cap [out]

A pointer to sgx_ps_cap_t structure indicates the platform service capability
of the platform.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The ps_cap pointer is invalid.
SGX_ERROR_SERVICE_UNAVAILABLE
The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

-202 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Network connecting or proxy setting issue was encountered.
SGX_ERROR_UNEXPECTED

An unexpected error is detected.

Description

Before using Platform Services provided by the trusted Architecture Enclave
support library, you need to call sgx_get ps cap first to get the capability
of the platform.

Requirements

Header sgx_uae service.h
Library Sgx uae service.liborsgx uae service sim.lib
(simulation)

sgx_register_wl_cert_chain

sgx_register wl cert chain helpsyou to provide an Enclave Signing
Key Allow List Certificate Chain. An Enclave Signing Key Allow List Certificate
Chain contains the signing key(s) of the Intel® SGX application enclave(s). If the
system has not acquired an up-to-date Enclave Signing Key Allow List Cer-
tificate Chain, you can provide the chain to the system by setting sgx
register wl cert chain.

Syntax
sgx_status t sgx register wl cert chain(

const TCHAR *CertChainPath

) ;

Parameters

CertChainPath [in]

The full path of Enclave Allow List Cert Chain file.
Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The Allow List is invalid.

-203 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_SERVICE_UNAVAILABLE
The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

The request to the AE service timed out.
SGX_ERROR_UNEXPECTED

An unexpected error is detected.
Description

If you have an update-to-date Enclave Signing Key Allow List Certificate Chain,
youneed tocall sgx_register wl cert chainonce firstto launch
enclaves.

Requirements

Header sgx_uae launch.h

Library sgx_launch.dll

sgx_enable_device

sgx_enable device helpsISV applications to enable the Intel® SGX device
and return appropriate status. If a reboot is required, ISV applications can
decide whether to notify users of the restart requirement or not.

Syntax
sgx status t sgx enable device (

sgx_device status_t *sgx device status

) ;

Parameters

sgx_device_status [out]

The status of Intel SGX device.
SGX_ENABLED

The platform is enabled for Intel SGX.
SGX_DISABLED_REBOOT_REQUIRED

-204 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

This platform is disabled for Intel SGX. It is configured to be enabled after the
next reboot. The Intel SGX device is currently disabled and a reboot is
required to enable it.

SGX_DISABLED_MANUAL_ENABLE

The platform is disabled for Intel SGX but can be enabled manually through
the BIOS menu. The Software Control Interface is not available to enable Intel
SGX on this platform.

SGX_DISABLED_LEGACY_OS

The operating system does not support UEFI enabling of the Intel SGX device.
If UEFI is supported by the operating system in general, but support for
enabling the Intel SGX device does not exist, this function will return the more
general SGX DISABLED.

SGX_DISABLED

This platform is disabled for Intel SGX. More details about the ability to enable
Intel® SGX are unavailable. There may be cases where Intel SGX can be manu-
ally enabled in the BIOS.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The sgx _device status pointer isinvalid.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_HYPERV_ENABLED

The detected version of Windows* 10 is incompatible with Hyper-V*. In this
case, you need to disable Hyper-V* on the target machine.

SGX_ERROR_UNEXPECTED
An unexpected error is detected.
Description

ISV applications can call sgx _enable device toenable Intel SGX device
dynamically.

- 205 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

A platform update may have occurred disabling Intel® SGX, and execution of
this APl will re-enable Intel® SGX but only after a reboot. If Intel® SGX is not cur-
rently enabled on the platform, the ISV application determines the next

course of action:

a. Continue to runin non-SGX mode
b. Shut down the application and inform the user that a reboot
is required before this application can run.

NOTE: In the case SGX_DISABLED is returned, manual BIOS configuration by
the user may be required. The ISV needs to determine the recommended
course of action to the user.

Requirements

Header sgx_uae service.h
Library sgx_uae service.dll
NOTE:

It's recommended to use sgx_cap enable device foran application
installer and sgx enable device for an Intel SGX application.

sgx_is_capable

sgx_1s capable helps ISV applications to check if the client platform is
enabled for the Intel® Software Guard Extensions (Intel® SGX). You must run
the client application with the administrator privileges to get the status suc-
cessfully.

Syntax
sgx status t sgx is capable (

int *sgx capable

) ;

Parameters

sgx_capable [out]

Capable status of the Intel SGX device.
1

Platform is enabled for the Intel SGX or the Software Control Interface is avail-
able to configure the Intel SGX device.

- 206 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

0]

Intel SGX device is not available or may require manual configuration.
Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

sgx_capable pointer is invalid.

SGX_ERROR_NO_PRIVILEGE

Application does not have the required privilege to read EFl variables. Run the
application with administrator privileges to query the Intel SGX device status.

SGX_ERROR_UNEXPECTED
Unexpected error is detected.
Description

ISV applications can call sgx_is capable to detect if the Intel® SGX device
is available. This APl is intended to detect cases where software can configure
the Intel SGX device. If O isreturned, sgx_cap get statuscanbe used to
detect manual configuration changes that can be made to enable the Intel
SGX device.

Requirements

Header sgx_capable.h

Library sgx_ capable.dll

NOTE:
Administrative privileges are required to use this API.

sgx_cap_enable_device

sgx_cap enable device helpsISV applications to enable the Intel® Soft-
ware Guard Extensions (Intel® SGX) device and return the appropriate status.
If a reboot is required, an ISV application can decide whether to notify users of
the restart requirement or not.

Syntax
sgx_status t sgx cap enable device (

sgx_device status t *sgx device status

-207 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

)

Parameters

sgx_device_status [out]

Intel® SGX status of the Intel® SGX device.
SGX_ENABLED

Platform is enabled for the Intel® SGX.
SGX_DISABLED_REBOOT_REQUIRED

Platform is disabled for the Intel® SGX. Reboot required to enable the plat-
form.

SGX_DISABLED_MANUAL_ENABLE

Platform is disabled for the Intel® SGX but can be enabled manually through
the BIOS menu. The Software Control Interface is not available to enable the
Intel® SGX on this platform.

SGX_DISABLED_HYPERV_ENABLED

Detected version of Windows* OS10 is incompatible with the Hyper-V*. The
Intel® SGX cannot be enabled on the target system unless the Hyper-V* is dis-
abled.

SGX_DISABLED_LEGACY_OS

Operating system does not support UEFI enabling of the the Intel® SGX
device. If the operating system supports UEFI in general, but support for
enabling the Intel® SGX device does not exist, this function returns SGX
DISABLED.

SGX_DISABLED_UNSUPPORTED_CPU
Processor does not support the Intel SGX.
SGX_DISABLED

Platform is disabled for the Intel® SGX. More details about enabling the Intel®
SGX are unavailable. The Intel® SGX can be manually enabled in the BIOS.

Return value
SGX_SUCCESS

All the outputs are generated successfully.

-208 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_PARAMETER
The sgx device status pointerisinvalid.
SGX_ERROR_NO_PRIVILEGE

Application does not have the required privileges to read an UEFI variable.
Run the application with the administrator privileges to enable the Intel®
SGX device status.

SGX_ERROR_HYPERV_ENABLED

Detected version of Windows* OS 10 is incompatible with the Hyper-V*. Dis-
able the Hyper-V* on the target system.

SGX_ERROR_UNEXPECTED
Unexpected error is detected.
Description

ISV application can call sgx _cap enable device toenable the Intel SGX
device dynamically.

Requirements

Header sgx_capable.h

Library sgx_capable.dll

NOTE:
Administrative privileges are required to use this API.
APIs that begin with sgx_cap are utility functions that operate independently

of the Intel® SGX PSW. They do not require the PSW to be installed on the sys-
tem. When the PSW is installed, they have the same behavior.

This API should be used inside APP installer to enable Intel® SGX device dur-
ing installation.

sgx_cap_get_status

sgx_cap_get status helpsISV applications check the status of the Intel®
Software Guard Extensions (Intel® SGX) on the client platform. You must run
the client application with the administrator privileges to get the status suc-
cessfully.

Syntax

sgx status t sgx cap get status(

- 209 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_device status t *sgx device status

)

Parameters

sgx_device_status [out]

Intel® SGX status of the Intel® SGX device.
SGX_ENABLED

Platform is enabled for the Intel® SGX.
SGX_DISABLED_REBOOT_REQUIRED

Platform is disabled for the Intel® SGX. Reboot required for enabling the plat-
form.

SGX_DISABLED_SCI_AVAILABLE

Platform is disabled for the Intel® SGX but can be enabled using the Software
Control Interface.

SGX_DISABLED_MANUAL_ENABLE

Platform is disabled for the Intel® SGX but can be enabled manually through
the BIOS menu. The Software Control Interface is not available to enable the
Intel® SGX on this platform.

SGX_DISABLED_HYPERV_ENABLED

Detected version of Windows* 10 is incompatible with Hyper-V*. The Intel®
SGX cannot be enabled on the target machine, unless Hyper-V* is disabled.

SGX_DISABLED_LEGACY_OS

Operating system does not support UEFI enabling of the Intel SGX device. If
the operating system supports the UEFI in general but cannot enable the
Intel® SGX device, the function returns SGX DISABLED.

SGX_DISABLED_UNSUPPORTED_CPU
Processor does not support the Intel® SGX.
SGX_DISABLED

Platform is disabled for the Intel® SGX. You can try to enable the Intel® SGX
manually through the BIOS menu.

Return value

-210-

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The sgx_device status pointer isinvalid.
SGX_ERROR_NO_PRIVILEGE

Application does not have the required privileges to read EFl variables. Run
the application with the administrator privileges to query the Intel®
SGX device status.

SGX_ERROR_UNEXPECTED
Unexpected error is detected.
Description

ISV applications can call sgx cap get status todetect if the Intel® SGXis
enabled or can be enabled on the device, using the software interface or by
taking manual configuration steps.

Requirements

Header sgx_capable.h
Library sgx_capable.dll

NOTE:
Administrator privileges are required to use this API.

APIs that begin with sgx_cap are the utility functions that operate inde-
pendently of the Intel® SGX Platform Software (Intel® SGX PSW). They do not
require the Intel® SGX PSW to be installed on the system. When the Intel®
SGX PSW is installed, the functions behavior remains unchanged.

This APl should be used inside APP installer to query Intel® SGX device status
during installation.

sgx_cap_get_psw_version_string

sgx_cap get psw version string helpsISV applications determine
the version of the Intel® SGX Platform Software (PSW) installed on the device.
A buffer is specified along with the buffer length (in characters). If the buffer is
not large enough to hold the PSW version string or is NULL, the buffer length
needed to store the version string is returned in the size parameter.

Syntax

-211 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx status t sgx cap get psw version stringw (

LPWSTR *version string,
DWORD *version string len

) ;
or
sgx status t sgx cap get psw version stringa (

LPSTR *version string,
DWORD *version string len

) ;

Parameters

version_string [out]

Version of the PSW installed on the system, in the string format.
version_string_size [in out]

Whenversion stringisnot NULL,version string length isinter-
preted as the length of version string.lfversion string lenistoo
small to hold the string, or if a NULL pointer is passed in for version
string,version string len returnsthe lengthrequired.

Return value
SGX_SUCCESS

All the outputs are generated successfully. A NULL terminated version string is
returned inthe version string parameter.

SGX_ERROR_INVALID_PARAMETER
The version string len pointerisinvalid.
SGX_ERROR_OUT_OF_MEMORY

There is no sufficient space inthe version string parameter. The size of
the buffer needed is returned inthe version string len parameter.

SGX_ERROR_SERVICE_UNAVAILABLE

The Intel SGX PSW is not installed. As a result, the version string is not avail-
able.

SGX_ERROR_UNEXPECTED
An unexpected error is detected.

Description

-212 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

ISV applications can call sgx _cap get psw version string todeterm-
ine the version of the Intel SGX Platform Sofware installed on the device.

Requirements

Header sgx_capable.h
Library sgx_capable.dll

NOTE:
APIs that begin with sgx cap are utility functions that operate independently
of the Intel SGX PSW. They do not require the PSW to be installed on the sys-
tem. When the PSW is installed, they have the same behavior.

sgx_get_whitelist_size
sgx_get whitelist size returnsthe required buffer size for the allowl-
ist.

Syntax
sgx status t sgx get whitelist size(

uint32 t *p whitelist size

) ;

Parameters

p_whitelist_size [out]

Indicate the size of the allowlist buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Thep whitelist size pointerisinvalid.
SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_SERVICE_UNAVAILABLE

213 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT
A request to AE service timed out.
SGX_ERROR_UNEXPECTED

An unexpected error was detected.
Description

You cannot allocate a chunk of memory at compile time because the size of
the quote is not a fixed value. Instead, before trying to call sgx _get whitel-
ist,call sgx get whitelist size first to get the buffer size and then
allocate enough memory for the quote.

Requirements

Header sgx_uae launch.h

Library sgx_launch.liborsgx launch sim.1lib (simulation)

sgx_get_whitelist

sgx_get whitelist returns the allowlist used by aesm_ service.
Syntax

sgx status t sgx get whitelist(

uint8 t *p whitelist,
uint32 t whitelist size

) ;

Parameters
p_whitelist [out]
The allowlist.
whitelist_size [in]

Indicate the size of the allowlist buffer. To get the size, call sgx _get whitel-
ist size first.

Return value
SGX_SUCCESS

All the outputs are generated successfully.

-214 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_PARAMETER

Thep whitelist pointerisinvalid orwhitelist size isnot correct.
SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond.
SGX_ERROR_SERVICE_TIMEOUT

A request to AE service timed out.
SGX_ERROR_UNEXPECTED

An unexpected error was detected.

Description

You can get current allowlist used by aesm_service.

Requirements

Header sgx_uae_ launch.h

Library sgx_launch.libor sgx launch sim.1lib (simulation)

sgx_is_within_enclave

The sgx is within enclave function checks that the buffer located at
the pointer addr with its length of size is an address that is strictly within
the calling enclave address space.

Syntax
int sgx 1s within enclave (

const void *addr,
size t size

) ;
Parameters

addr [in]
The start address of the buffer.

=215 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

size [in]
The size of the buffer.

Return value

1

The buffer is strictly within the enclave address space.
0]

The whole buffer or part of the buffer is not within the enclave, or the buffer is
wrapped around.

Description

sgx_1s within enclave simply compares the start and end address of
the buffer with the calling enclave address space. It does not check the prop-
erty of the address. Given a function pointer, you sometimes need to confirm
whether such a function is within the enclave. In this case, it is recommended
touse sgx is within enclave withasizeof1.sgx is within
enclave returns O if the buffer is outside the enclave or overlaps with the
enclave boundary. Thus ! sgx is within enclave () # sgx is out-
side _enclave ().

Requirements

Header sgx_trts.h
Library sgx_trts.liborsgx trts sim.lib (simulation)

sgx_is_outside_enclave

The sgx_is outside enclave function checks that the buffer located at
the pointer addr with its length of size is an address that is strictly outside
the calling enclave address space.

Syntax
int sgx 1is outside enclave (

const void *addr,
size t size

)

Parameters
addr [in]

-216 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The start address of the buffer.

size [in]

The size of the buffer.

Return value

1

The buffer is strictly outside the enclave address space.
0]

The whole buffer or part of the buffer is not outside the enclave, or the buffer
is wrapped around.

Description

sgx_is outside enclave simply compares the start and end address of
the buffer with the calling enclave address space. It does not check the prop-
erty of the address. sgx_is outside enclave returns O if the buffer is
inside the enclave or overlaps with the enclave boundary. Thus ! sgx is
outside enclave () # sgx 1is within enclave ().

Requirements

Header sgx_trts.h
Library sgx_trts.liborsgx trts sim.lib (simulation)

sgx_read_rand

The sgx read rand function is used to generate a random number inside
the enclave.

Syntax
sgx status t sgx read rand(

unsigned char *rand,
size t length in bytes

) ;

Parameters

rand [out]

-217 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

A pointer to the buffer that receives the random number. The pointer cannot
be NULL. The rand buffer can be either within or outside the enclave, but it is
not allowed to be across the enclave boundary or wrapped around.

length_in_bytes [in]

The length of the buffer (in bytes).
Return value

SGX_SUCCESS

Indicates success.
SGX_ERROR_INVALID_PARAMETER
Invalid input parameters detected.
SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the valid random number gen-
eration process.

Description

The sgx read rand function is provided to replace the C standard pseudo-
random sequence generation functions inside the enclave, since these stand-
ard functions are not supported in the enclave, such as rand, srand, etc. For
HW mode, the function generates a real-random sequence; while for sim-
ulation mode, the function generates a pseudo-random sequence.

Requirements

Header sgx_trts.h
Library sgx_trts.liborsgx trts sim.lib (simulation)

sgx_register_exception_handler

sgx_register exception handler allows developers to register an
exception handler, and specify whether to prepend (when is first hand-
ler isequal to 1) or append the handler to the handler chain.

Syntax
void* sgx register exception handler (

int is first handler,
sgx_exception handler t exception handler

) ;

-218 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Parameters
is_first_handler [in]

Specify the order in which the handler should be called. If the parameter is
nonzero, the handler is the first handler to be called. If the parameter is zero,
the handler is the last handler to be called.

exception_handler [in]

The exception handler to be called
Return value

Non-zero

Indicates the exception handler is registered successfully. The return value is
an open handle to the custom exception handler.

NULL
The exception handler was not registered.
Description

The Intel® SGX SDK supports the registration of custom exception handler
functions. You can write your own code to handle a limited set of hardware
exceptions. For example, a CPUID instruction inside an enclave will effectively
result in a #UD fault (Invalid Opcode Exception). ISV enclave code can have an
exception handler to prevent the enclave from being trapped into an excep-
tion condition. See Custom Exception Handling for more details.

Calling sgx_register exception handler allowsyou toregisteran
exception handler, and specify whether to prepend (when is first hand-
ler is nonzero) or append the handler to the handler chain.

After calling sgx_register exception handler to prepend an excep-
tion handler, a subsequent call to this function may add another exception
handler at the beginning of the handler chain. Therefore the order in which
exception handlers are called does not only depend on the value of the is
first handler parameter, but more importantly depends on the order in
which exception handlers are registered.

NOTE:
Custom exception handling is only supported in hardware mode. Although the
exception handlers can be registered in simulation mode, the exceptions can-
not be caught and handled within the enclave.

Requirements

-219 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_trts exception.h
Library sgx_trts.liborsgx trts sim.lib (simulation)

sgx_unregister_exception_handler

sgx_unregister exception handler isused to unregister a custom
exception handler.

Syntax
int sgx unregister exception handler (

void* handler

) ;

Parameters
handler [in]

A handle to the custom exception handler previously registered using the
sgx_register exception handler function.

Return value
Non-zero
The custom exception handler is unregistered successfully.

0]

The exception handler was not unregistered (not a valid pointer, handler not
found).

Description

The Intel® SGX SDK supports the registration of custom exception handler
functions. An enclave developer can write their own code to handle a limited
set of hardware exceptions. See Custom Exception Handling for more details.

Calling sgx_unregister exception handler allows developersto unre-
gister an exception handler that was registered earlier.

Requirements

Header sgx_trts exception.h

Library sgx_trts.liborsgx trts sim.lib (simulation)

-220 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_spin_lock

The sgx_spin lock function acquires a spin lock within the enclave.
Syntax

uint32 t sgx spin_ lock(

sgx_spinlock t * lock

) ;

Parameters

lock [in]

The trusted spin lock object to be acquired.

Return value

0

This function always returns zero after the lock is acquired.
Description

sgx_spin lock modifies the value of the spin lock by using compiler atomic
operations. If the lock is not available to be acquired, the thread will always
wait on the lock until it can be acquired successfully.

Requirements

Header sgx_spinlock.h
Library sgx_tstdc.lib

sgx_spin_unlock

The sgx spin unlock function releases a spin lock within the enclave.
Syntax

uint32 t sgx spin unlock(

sgx_spinlock t * lock

) ;
Parameters

lock [in]

The trusted spin lock object to be released.

-221-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Return value

0]

This function always returns zero after the lock is released.
Description

sgx_spin unlock resets the value of the spin lock, regardless of its current
state. This function simply assigns a value of zero to the lock, which indicates
the lock is released.

Requirements

Header sgx_spinlock.h
Library sgx_tstdc.lib

sgx_thread_mutex_init

The sgx_thread mutex init function initializes a trusted mutex object
within the enclave.

Syntax
int sgx thread mutex init (

sgx_thread mutex t * mutex,
const sgx thread mutexattr t * unused

)

Parameters

mutex [in]

The trusted mutex object to be initialized.
unused [in]

Unused parameter reserved for future user defined mutex attributes. [NOT
USED]

Return value
0]
The mutex is initialized successfully.

EINVAL

-222 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The trusted mutex object is invalid. It is either NULL or located outside of
enclave memory.

Description

When a thread creates a mutex within an enclave, sgx thread mutex
init simply initializes the various fields of the mutex object to indicate that
the mutex is available. sgx thread mutex init createsa non-recursive
mutex. The results of using a mutex in a lock or unlock operation before it has
been fully initialized (for example, the function call to sgx thread mutex
init returns) are undefined. To avoid race conditions in the initialization of a
trusted mutex, it is recommended statically initializing the mutex with the
macro SGX THREAD MUTEX INITIALIZER,SGX THREAD NON

RECURSIVE MUTEX INITIALIZER,of, or SGX THREAD RECURSIVE
MUTEX INITIALIZER instead.

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_thread_mutex_destroy

The sgx_thread mutex destroy function destroys a trusted mutex
object within an enclave.

Syntax
int sgx thread mutex destroy(

sgx_thread mutex t * mutex

)

Parameters

mutex [in]

The trusted mutex object to be destroyed.
Return value

0]

The mutex is destroyed successfully.
EINVAL

-223 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The trusted mutex object is invalid. It is either NULL or located outside of
enclave memory.

EBUSY

The mutex is locked by another thread or has pending threads to acquire the
mutex.

Description

sgx_thread mutex destroy resetsthe mutex, which brings it to its initial
status. In this process, certain fields are checked to prevent releasing a mutex
that is still owned by a thread or on which threads are still waiting.

NOTE:

Locking or unlocking a mutex after it has been destroyed results in undefined
behavior. After a mutex is destroyed, it must be re-created before it can be
used again.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library sgx_tstdc.lib

sgx_thread_mutex_lock

The sgx thread mutex lock function locks a trusted mutex object within
an enclave.

Syntax
int sgx thread mutex lock(

sgx_thread mutex t * mutex

) ;

Parameters

mutex [in]

The trusted mutex object to be locked.
Return value

0

The mutex is locked successfully.

EINVAL

-224-

Intel® Software Guard Extensions Developer Reference for Windows* OS

The trusted mutex object is invalid.
Description

To acquire a mutex, a thread first needs to acquire the corresponding spin
lock. After the spin lock is acquired, the thread checks whether the mutex is
available. If the queue is empty or the thread is at the head of the queue the
thread will now become the owner of the mutex. To confirm its ownership, the
thread updates the refcount and owner fields. If the mutex is not available, the
thread searches the queue. If the thread is already in the queue, but not at the
head, it means that the thread has previously tried to lock the mutex, but it
did not succeed and had to wait outside the enclave and it has been
awakened unexpectedly. When this happens, the thread makes an OCALL and
simply goes back to sleep. If the thread is trying to lock the mutex for the first
time, it will update the waiting queue and make an OCALL to get suspended.
Note that threads release the spin lock after acquiring the mutex or before
leaving the enclave.

NOTE

A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a mutex. Do not split the critical section protected by a
mutex across root ECALLs.

Requirements

Header sgx_thread.h sgx tsrdc.edl
Library sgx_tstdc.lib

sgx_thread_mutex_trylock

The sgx_thread mutex trylock function tries to lock a trusted mutex
object within an enclave.

Syntax

int sgx thread mutex trylock(

sgx_thread mutex t * mutex

)
Parameters

mutex [in]

The trusted mutex object to be try-locked.

-225 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Return value

0]

The mutex is locked successfully.
EINVAL

The trusted mutex object is invalid.
EBUSY

The mutex is locked by another thread or has pending threads to acquire the
mutex.

Description

A thread may check the status of the mutex, which implies acquiring the spin
lock and verifying that the mutex is available and that the queue is empty or
the thread is at the head of the queue. When this happens, the thread

acquires the mutex, releases the spin lock and returns 0. Otherwise, the

thread releases the spin lock and returns EINVAL/EBUSY. The thread is not sus-
pended in this case.

NOTE

A thread should not exit an enclave returning from a root ECALL after acquir-
ing the ownership of a mutex. Do not split the critical section protected by a
mutex across root ECALLs.

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_thread_mutex_unlock

The sgx thread mutex unlock function unlocks a trusted mutex object
within an enclave.

Syntax
int sgx thread mutex unlock(

sgx_thread mutex t * mutex

) ;

Parameters

-226 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

mutex [in]

The trusted mutex object to be unlocked.

Return value

0]

The mutex is unlocked successfully.

EINVAL

The trusted mutex object is invalid or it is not locked by any thread.
EPERM

The mutex is locked by another thread.

Description

Before a thread releases a mutex; it has to verify it is the owner of the mutex. If
that is the case, the thread decreases the refcount by 1 and then may either
continue normal execution or wakeup the first thread in the queue. Note that
to ensure the state of the mutex remains consistent, the thread that is
awakened by the thread releasing the mutex will then try to acquire the
mutex almost as in the initial call to the sgx thread mutex lock routine.

Requirements

Header sgx_thread.h sgxtstdc.edl
Library sgx_tstdc.lib

sgx_thread_cond_init

The sgx thread cond init function initializes a trusted condition vari-
able within the enclave.

Syntax
int sgx thread cond init(

sgx_thread cond t * cond,
const sgx thread condattr t * unused

) ;
Parameters

cond [in]

The trusted condition variable.

-227 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

attr [in]

Unused parameter reserved for future user defined condition variable attrib-
utes. [NOT USED]

Return value

0]

The condition variable is initialized successfully.
EINVAL

The trusted condition variable is invalid. It is either NULL or located outside
enclave memory.

Description:

When a thread creates a condition variable within an enclave, it simply ini-
tializes the various fields of the object to indicate that the condition variable is
available. The results of using a condition variable in a wait, signal or broadcast
operation before it has been fully initialized (for example, the function call to
sgx_thread cond_ init returns) are undefined. To avoid race conditions
in the initialization of a condition variable, it is recommended statically ini-
tializing the condition variable with the macro SGX THREAD COND
INITIALIZER.

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_thread_cond_destroy

The sgx_thread cond destroy function destroys a trusted condition vari-
able within an enclave.

Syntax

int sgx thread cond destroy (

sgx_thread cond t * cond

) ;
Parameters

cond [in]

The trusted condition variable to be destroyed.

-228 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Return value

0]

The condition variable is destroyed successfully.
EINVAL

The trusted condition variable is invalid. It is either NULL or located outside
enclave memory.

EBUSY
The condition variable has pending threads waiting on it.
Description

The procedure first confirms that there are no threads waiting on the con-
dition variable before it is destroyed. The destroy operation acquires the spin
lock at the beginning of the operation to prevent other threads from signaling
to or waiting on the condition variable.

NOTE
Acquiring or releasing a condition variable after it has been destroyed results
in undefined behavior. After a condition variable is destroyed, it must be re-
created before it can be used again.

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_thread_cond_wait

The sgx thread cond wait function waits on a condition variable within
an enclave.

Syntax
int sgx thread cond wait (

sgx_thread cond t * cond,
sgx thread mutex t * mutex

) ;

Parameters

cond [in]

-229 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The trusted condition variable to be waited on.
mutex [in]

The trusted mutex object that will be unlocked when the thread is blocked in
the condition variable.

Return value
0

The thread waiting on the condition variable is signaled by other thread
(without errors).

EINVAL

The trusted condition variable or mutex object is invalid or the mutex is not
locked.

EPERM
The trusted mutex is locked by another thread.
Description:

A condition variable is always used in conjunction with a mutex. To wait on a
condition variable, a thread first needs to acquire the condition variable spin
lock. After the spin lock is acquired, the thread updates the condition variable
waiting queue. To avoid the lost wake-up signal problem, the condition vari-
able spin lock is released after the mutex. This order ensures the function
atomically releases the mutex and causes the calling thread to block on the
condition variable, with respect to other threads accessing the mutex and the
condition variable. After releasing the condition variable spin lock, the thread
makes an OCALL to get suspended. When the thread is awakened, it acquires
the condition variable spin lock. The thread then searches the condition vari-
able queue. If the thread is in the queue, it means that the thread was already
waiting on the condition variable outside the enclave, and it has been
awakened unexpectedly. When this happens, the thread releases the con-
dition variable spin lock, makes an OCALL and simply goes back to sleep.
Otherwise, another thread has signaled or broadcasted the condition variable
and this thread may proceed. Before returning, the thread releases the con-
dition variable spin lock and acquires the mutex, ensuring that upon returning
from the function call the thread still owns the mutex.

NOTE

-230 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Threads check whether they are in the queue to make the Intel SGX condition
variable robust against attacks to the untrusted event.

A thread may have to do up to two OCALLs throughout the sgx thread
cond_ wait function call

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_thread_cond_signal

The sgx thread cond signal function wakes a pending thread waiting
on the condition variable.

Syntax
int sgx thread cond signal (

sgx_thread cond t * cond

) ;

Parameters

cond [in]

The trusted condition variable to be signaled.
Return value

0]

One pending thread is signaled.

EINVAL

The trusted condition variable is invalid.
Description

To signal a condition variable, a thread starts acquiring the condition variable
spin-lock. Then it inspects the status of the condition variable queue. If the
queue is empty it means that there are not any threads waiting on the con-
dition variable. When that happens, the thread releases the condition variable
and returns. However, if the queue is not empty, the thread removes the first
thread waiting in the queue. The thread then makes an OCALL to wake up the
thread that is suspended outside the enclave, but first the thread releases the

=231 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

condition variable spin-lock. Upon returning from the OCALL, the thread con-
tinues normal execution.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library sgx_tstdc.lib

sgx_thread_cond_broadcast

The sgx thread cond broadcast function wakes all pending threads
waiting on the condition variable.

Syntax
int sgx thread cond broadcast (

sgx_thread cond t * cond

) ;

Parameters

cond [in]

The trusted condition variable to be broadcasted.
Return value

0]

All pending threads have been broadcasted.
EINVAL

The trusted condition variable is invalid.
ENOMEM

Internal memory allocation failed.
Description

Broadcast and signal operations on a condition variable are analogous. The
only difference is that during a broadcast operation, the thread removes all
the threads waiting on the condition variable queue and wakes up all the
threads suspended outside the enclave in a single OCALL.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library sgx_tstdc.lib

-232 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_thread_self
The sgx_thread self function returns the unique thread identification.

Syntax
sgx _thread t sgx thread self(

void

) ;

Return value

The return value cannot be NULL and is always valid as long as it is invoked by
a thread inside the enclave.

Description

The functionis a simple wrap of get thread data () provided in the tRTS,
which provides a trusted thread unique identifier.

NOTE:
This identifier does not change throughout the life of an enclave.

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_thread_equal

The sgx thread equal function compares two thread identifiers.
Syntax

int sgx thread equal (sgx thread t

sgx_thread t t1,
sgx_thread t t2

)

Return value
A nonzero value if the two thread IDs are equal, O otherwise.

Description

-233 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The function compares two thread identifiers provided by sgx thread
self to determine if the IDs refer to the same trusted thread.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library sgx_tstdc.lib

sgx_create_event

The sgx create event function initializes an unamed event within the
enclave.

Syntax
int sgx create event (

sgx_thread sync object handle t* handle,
int is manual reset,
int is_signaled init state

)

Parameters

handle [out]

Pointer to handle of the trusted thread synchronization object (event).
is_manual_reset [in]

If this parameter is 1, the event can only be reset manually.

If this parameter is O, the event will be reset automatically.
is_signaled_init_state [in]

By default, the initial state of the event is not set. However, when this para-
meter is 1, the event will be signaled upon initialization.

When this parameter is O, the event will be non-signaled upon initialization.
Return value

0

The unnamed event is initialized successfully.

EINVAL

The pointer to the trusted event is invalid.

ENOMEM

-234-

Intel® Software Guard Extensions Developer Reference for Windows* OS

There is not enough memory to allocate an event.
Description

When a thread creates an event within an enclave, sgx create event
simply initializes various fields of the event object to indicate that the event is
available. By default, sgx create event creates a non-signaled event that
is automatically reset by sgx wait for single object and sgx wait
for multiple objects. The results of using an event in any operation
before it has been fully initialized are undefined.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library sgx_tstdc.lib

sgx_set_event

The sgx_set event function sets the event object to the signaled state.

Syntax
int sgx _set event (

sgx_thread sync object handle t handle

)

Parameters

handle [in]

Handle of the trusted thread synchronization object (event).
Return value

0]

The event object state was signaled successfully.

EINVAL

The pointer to the trusted event is invalid.

Description

sgx_set event explicitly signals the state of an event object. The state of
an auto-reset event object remains signaled until a thread waiting on this
event is released. The state of a manually-reset event object remains signaled

-235 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

until you explicitly reset it calling sgx_reset event.All threads waiting on a
manually-reset event will be released.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library sgx_tstdc.lib

sgx_reset_event

The sgx reset event function sets the event object to the non-signaled
state.

Syntax
int sgx reset event(

sgx_thread sync object handle t handle

) ;

Parameters

handle [in]

Handle of the trusted thread synchronization object (event).
Return value

0

The event object state is reset successfully.

EINVAL

The pointer to the trusted event is invalid.

Description

sgx_reset event changes the state of an event object to non-signaled.
Use this function to reset events configured not to be automatically reset.

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

-236 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_wait_for_single_object

The sgx_wait for single object function waits until the specified
object is in the signaled state or the timeout interval elapses.

Syntax
int sgx wait for single object (

sgx_thread sync object handle t handle,
uint32 t timeout

) ;

Parameters

handle [in]

Handle of the trusted thread synchronization object (event).
timeout [in]

Timeout interval. Only 0 and WAIT FUNC TIMEOUT INFINITE are sup-
ported. With WAIT FUNC_TIMEOUT INFINITE athread waits until the
object is signaled. If timeout is zero, the function does not enter a wait state if
the object is not signaled. Instead it returns immediately.

Return value

0]

The object was signaled successfully.
SGX_THREAD_ERROR_WAIT_TIMEOUT

A timeout interval of O was specified and the object was not in the signaled
state.

SGX_THREAD_ERROR_WAIT_FAILED
The function failed to wait.
Description

sgx_wailt for single object allowsathread to wait until an object is
signaled (timeout WAIT FUNC TIMEOUT INFINITE) orto check whetheran
object has been signaled (timeout zero) without waiting if not.

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

-237 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_wait_for_multiple_objects

The sgx wait for multiple objects function waits until one or all of
the specified objects are in the signaled state or the timeout interval elapses.

Syntax

int sgx wait for multiple objects(
uint32 t count,
sgx_thread sync object handle t * handles,

int wait_all,
uint32 t timeout

)

Parameters
count [in]

Number of objects in the handle array. The current implementation limits the
number of objects to MAX WAIT HANDLE NUM.

handles [in]
Array of handles of the trusted thread synchronization object (event).
wait_all [in]

If this parameteris 1,sgx wait for multiple objects returnsonly
after all the objects in the handle array are signaled. When this parameter is O,
the function returns when the state of any object is signaled. In this case, the
return value indicates the object whose state caused the function to return.

timeout [in]

Timeout interval. Only 0 and WAIT FUNC TIMEOUT INFINITE are sup-
ported. With WAIT FUNC TIMEOUT INFINITE,athread waits untilthe
event object is signaled. If timeout is zero, the function does not enter a wait
state if the event object is not signaled. Instead it returns immediately.

Return value

0]

If the function succeeds.

SGX_THREAD_ERROR_WAIT_TIMEOUT

A timeout interval of O was specified and no object was in the signaled state.

SGX_THREAD_ERROR_WAIT_FAILED

-238 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The function failed to wait.
Description

sgx_wailt for multiple objects allowsathread to wait until an object
is signaled (timeout WAIT FUNC TIMEOUT INFINITE) ortocheck whether
if an event object has been signaled (timeout zero). Handles could refer to dif-
ferent object types: event and mutex.

Requirements

Header sgx_thread.h sgx_tstdc.edl
Library sgx_tstdc.lib

sgx_destroy_event

The sgx destroy event function destroys the event object and releases
all its resources.

Syntax
int sgx destroy event (

sgx_thread sync object handle t handle

) ;

Parameters

handle [in]

Handle of the trusted thread synchronization object (event).

Return value

0

The event object was destroy successfully.

Non zero

The function failed. See the returned error code for additional information.
Description

sgx_destroy event destroys an event object and releases all the
resources associated with the event. This function signals all threads waiting
on the event before it is closed.

NOTE:

-239 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The sgx_destroy event returns different values if the event object to be
destroyed is being waited by sgx wait single object or sgx wait
multiple objects:

o The sgx _destroy event returns EBUSY if the event is being waited
by sgx wait single object.

o« The sgx destroy event returns 0 if the event is being waited by
sgx walt multiple objects.

Requirements

Header sgx_thread.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_cpuid

The sgx_cpuid function performs the equivalent of a cpuid() function call or
intrinisic which executes the CPUID instruction to query the host processor for
the information about supported features.

NOTE:
This function performs an OCALL to execute the CPUID instruction.

Syntax
sgx _status t sgx cpuid(

int cpuinfol[4],
int leaf

) ;

Parameters
cpuinfo [in, out]

The information returned in an array of four integers. This array must be loc-
ated within the enclave.

leaf [in]

The leaf specified for retrieved CPU info.
Return value

SGX_SUCCESS

Indicates success.

- 240 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_PARAMETER

Indicates the parameter cpuinfo is invalid, which would be NULL or outside the
enclave.

Description

This function provides the equivalent of the cpuid() function or intrinsic. The
function executes the CPUID instruction for the given leaf (input). The CPUID
instruction provides processor feature and type information that is returned in
cpuinfo, an array of 4 integers to specify the values of EAX, EBX, ECX and EDX
registers. sgx cpuid performs an OCALL by invoking oc_cpuidex to get the
info from untrusted side because the CPUID instruction is an illegal instruction
in the enclave domain.

For additional details, see Intel® 64 and IA-32 Architectures Software
Developer's Manual for the description on the CPUID instruction and its indi-
vidual leafs. (Leaf corresponds to EAX in the PRM description).

NOTE

1. As the CPUID instruction is executed by an OCALL, the results should not
be trusted. Code should verify the results and perform a threat eval-
uation to determine the impact on trusted code if the results were
spoofed.

2. The implementation of this function performs an OCALL and therefore,
this function will not have the same serializing or fencing behavior of
executing a CPUID instruction in an untrusted domain code flow.

Requirements

Header sgx_cpuid.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_cpuidex

The sgx_cpuidex function performs the equivalent of a cpuid ex () func-
tion call or intrinisic which executes the CPUID instruction to query the host
processor for the information about supported features.

NOTE:
This function performs an OCALL to execute the CPUID instruction.

Syntax

sgx status t sgx cpuidex(

=241 -

https://software.intel.com/en-us/articles/intel-sdm

Intel® Software Guard Extensions Developer Reference for Windows* OS

int cpuinfol[4],
int leaf,
int subleaf

) ;

Parameters
cpuinfo [in, out]

The information returned in an array of four integers. The array must be loc-
ated within the enclave.

leaf[in]

The leaf specified for retrieved CPU info.
subleaf[in]

The sub-leaf specified for retrieved CPU info.
Return value

SGX_SUCCESS

Indicates success.
SGX_ERROR_INVALID_PARAMETER

Indicates the parameter cpuinfo is invalid, which would be NULL or outside the
enclave.

Description

This function provides the equivalent of the cpuid () function or intrinsic.
The function executes the CPUID instruction for the given leaf (input). The
CPUID instruction provides processor feature and type information returned

in cpuinfo, an array of 4 integers to specify the values of EAX, EBX, ECX and
EDX registers. sgx_cpuid performs an OCALL by invoking oc_cpuidex to get
the info from untrusted side because the CPUID instruction is an illegal instruc-
tion in the enclave domain.

For additional details, see Intel® 64 and IA-32 Architectures Software
Developer's Manual for the description on the CPUID instruction and its indi-
vidual leafs. (Leaf corresponds to EAX in the PRM description).

NOTE

242 -

https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4

Intel® Software Guard Extensions Developer Reference for Windows* OS

1. As the CPUID instruction is executed by an OCALL, the results should not
be trusted. Code should verify the results and perform a threat eval-
uation to determine the impact on trusted code if the results were
spoofed.

2. The implementation of this function performs an OCALL and therefore,
this function will not have the same serializing or fencing behavior of
executing a CPUID instruction in an untrusted domain code flow.

Requirements

Header sgx_cpuid.h sgx tstdc.edl
Library sgx_tstdc.lib

sgx_get_key
The sgx_get key function generates a 128-bit secret key using the input
information. This function is a wrapper for the Intel SGX EGETKEY instruction.

Syntax
sgx _status t sgx get key(

const sgx key request t *key request,
sgx_key 128bit t *key

)

Parameters
key_request [in]

A pointer to a sgx_key _request_t object used for selecting the appropriate
key and any additional parameters required in the derivation of that key. The
pointer cannot be NULL and must be located within the enclave. See details
on the sgx_key request_t to understand initializing this structure before call-
ing this function.

key [out]

A pointer to the buffer that receives the cryptographic key output. The
pointer cannot be NULL and must be located within enclave memory.

Return value
SGX_SUCCESS

Indicates success.

- 243 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

key request buffer must be non-NULL and located within the enclave.
key buffer must be non-NULL and located within the enclave.

key request and key request->key policy should not have any
reserved bits set.

SGX_ERROR_OUT_OF_MEMORY
Indicates an error that the enclave is out of memory.
SGX_ERROR_INVALID_ATTRIBUTE

Indicates the key request requests a key for a KEYNAME which the enclave
is not authorized.

SGX_ERROR_INVALID_CPUSVN

Indicates key request->cpu_svn is beyond platform CPUSVN value
SGX_ERROR_INVALID_ISVSVN

Indicates key request->isv_svn is greater than the enclave’s ISVSVN
SGX_ERROR_INVALID_KEYNAME

Indicates key request->key name is an unsupported value
SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the key generation process.
Description

The sgx _get key function generates a 128-bit secret key from the pro-
cessor specific key hierarchy with the key request information. If the func-
tion fails with an error code, the key buffer will be filled with random numbers.
The key request structure needs to be initialized properly to obtain the
requested key type. See sgx_key request_t for structure details.

NOTE:

It is not recommended to use this API to obtain the sealing key. Use the sgx
seal data,sgx seal data ex,and sgx unseal data APlinstead.
The sealing key can change after the platform firmware is updated. The seal-
ing data APl generates a data blob (sgx sealed data t), which containsall

-244 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

the necessary information to unseal the blob even after updating the platform
firmware. Without this information, unsealing may fail.

Requirements

Header sgx_utils.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_create_report

Tries to use the information of the target enclave and other information to cre-
ate a cryptographic report of the enclave. This function is a wrapper for the
Intel® Software Guard Extensions (Intel® SGX) EREPORT instruction.

Syntax
sgx status t sgx create report(

const sgx target info t *target info,
const sgx report data t *report data,
sgx_report t *report

) ;

Parameters
target_info [in]

Pointer to the sgx_target_info_t object that contains the information of the tar-
get enclave, which will cryptographically verify the report by calling sgx
verify report.

o Ifthe pointer value is NULL, sgx create report retrievesinform-
ation about the calling enclave, but the generated report cannot be veri-
fied by any enclave.

« If the pointer value is not NULL, the target info buffer must be
within the enclave.

See sgx_target_info_t for structure details.
report_data [in]

Pointer to the sgx_report_data_t object that contains a set of data used for
communication between the enclaves. This pointer is allowed to be NULL. If it
is not NULL, the report data buffer must be within the enclave. See sgx_
report_data_t for structure details.

- 245 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

report [out]

Pointer to the buffer that receives the cryptographic report of the enclave.
The pointer cannot be NULL and the report buffer must be within the enclave.
See sgx_report_t for structure details.

Return value

SGX_SUCCESS

Indicates success.
SGX_ERROR_INVALID_PARAMETER

An error is reported if any of the parameters are non-NULL but the memory is
not within the enclave or the reserved fields of the data structure are not set
to zero.

Description

Use the function sgx_create report to create a cryptographic report that
describes the contents of the calling enclave. The report can be used by other
enclaves to verify that the enclave is running on the same platform. When an
enclave calls sgx _verify report toverify areport,it succeeds only if the
report has been generated using the target info for said enclave. This
function is a wrapper for the Intel® SGX EREPORT instruction.

Before the source enclave calls sgx create report to generate areport, it
needs to populate target info with information about the target enclave
that will verify the report. The target enclave may obtain this information by
calling sgx create report withaNULL pointer or directly calling sgx
self target fortarget info and passitto the source enclave at the
beginning of the inter-enclave attestation process.

Requirements

Header sgx_utils.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_verify_report

The sgx verify report function provides software verification for the
report which is expected to be generated by the sgx_create_report function.

Syntax

sgx_status t sgx verify report(

- 246 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

const sgx report t * report

)

Parameters
report[in]

A pointer to an sgx_report_t object that contains the cryptographic report to
be verified. The pointer cannot be NULL and the report buffer must be within
the enclave.

Return value
SGX_SUCCESS

Verification success: The input report was generated usinga target info
that matches the one for the enclave making this call.

SGX_ERROR_INVALID_PARAMETER

The report object is invalid.

SGX_ERROR_MAC_MISMATCH

Indicates report verification error.

SGX_ERROR_UNEXPECTED

Indicates an unexpected error occurs during the report verification process.
Description

The sgx verify report performsa cryptographic CMAC function of the
input sgx_report_data_t object in the report using the report key. Then the
function compares the input report MAC value with the calculated MAC value
to determine whether the report is valid or not.

Requirements

Header sgx_utils.h

Library sgx_tservice.liborsgx tservice sim.1lib (sim-
ulation)

sgx_self_report

Generates a self cryptographic report of an enclave.

Syntax

const sgx report t *sgx self report(void);

=247 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Return value

The function returns a constant pointer to the generated self cryptographic
report of an enclave. See sgx_report_t for structure details.

Description

This function returns a self cryptographic report of an enclave. On the first call,
the function calls sgx create report withaNULL pointer for target
info to generate a self cryptographic report of the enclave and saves it. For
the subsequent calls, the function directly returns the generated report
pointer.

Requirements

Header sgx_utils.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_self_target

Generates self target info from the self cryptographic report of an enclave.
Syntax

sgx status t sgx self target(

sgx_target info t *target info

Parameters
target_info [OUT]

Pointer to the sgx_target_info_t object that receives the generated self target
info from the self report of an enclave. The target info must be a non-
NULL pointer, and the buffer must be located within the enclave.

Return value

SGX_SUCCESS

Indicates success.
SGX_ERROR_INVALID_PARAMETER

Invalid input parameters detected.

-248 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNEXPECTED
Indicates an unexpected error occured.
Description

The function sgx_self target generates self target info with the self cryp-
tographic report of the enclave. You can use it to get target info in the inter-
enclave attestation process.

Requirements

Header sgx_utils.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_get_aligned_ptr

The sgx_get aligned ptr function returns the address within the
provided buffer. The returned address will be used as the starting address of
the structure to be aligned.
Syntax
void *sgx get aligned ptr (

void *raw,

size t raw size,

size t allocate size,

size t alignment,

align _req t *data,
size t count

)

Parameters

raw [in]

Pointer to the buffer allocated by the caller.
raw_size [in]

Size of the raw buffer.

allocate_size [in]

Size of the structure to be aligned.
alignment [in]

Desired, traditional alignment of the structure. Must be power of 2.

- 249 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

data [in]

(offset, length) pairs to define the fields in the structure that needs con-
fidentiality protection. If data is NULL and count is O, the whole structure is
treated as needing confidentiality protection.

count [in]
Number of align_req_t structures in the data.
Return value

Address within the provided buffer where structure to be aligned must start
or NULL, including the case when the strucutre cannot be aligned.

Description

The sgx get aligned ptr function faciliates alignment of the structure
that contains secrets. The function returns the address within the provided
raw buffer to be used as the start address of the structure on a specific bound-
ary. If the structure cannot be aligned, the function returns NULL.

If the whole structure cannot be aligned, you can use align_req_t structure to
define part of the secrets in the structure to be protected.

The raw buffer is defined/allocated by the caller. In general, its size (specified
by the raw_size parameter) must be bigger than the structure being aligned.
The delta between the raw buffer size and the structure size depends on
value of the desired, traditional alignment. Raw_size >= sizeof(structure) + 64
+ A, where A = max((desired, traditional alignment), 8)

Requirements

Header sgx_secure_align api.h
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_aligned_malloc

The sgx _aligned malloc function allocates memory for a structure on a
specified alignment boundary and returns the address where structure must
start in order to be aligned.

Syntax

- 250 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

void *sgx aligned malloc (
size t size,
size t alignment,
align req t *data,
size t count

) ;

Parameters

size [in]

Size of the structure to be aligned.

alignment [in]

Desired, traditional alignment of the structure. Must be power of 2.
data [in]

(offset, length) pairs to define the fields in the structure that needs con-
fidentiality protection. If the data is NULL and count is O, the whole structure is
treated as needing confidentiality protection.

count [in]
Number of align_req_t structures in the data.
Return value

Pointer to the memory block that is allocated or NULL if the operation failed,
including the case when the structure cannot be aligned.

Description

The sgx aligned malloc function allocates memory for the structure that
contains secrets on a specified alignment boundary. If the structure cannot be
aligned, the function returns NULL.

If the whole structure cannot be aligned, you can use the align_req_t structure
to define part of the secrets in the structure to be protected.

The pointer allocated by sgx aligned malloc must be released by sgx
aligned free.

Requirements

-251 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_secure_align api.h
Library sgx_tservice.liborsgx tservice sim.1lib (sim-
ulation)

sgx_aligned_free

The sgx aligned free function frees a block of memory allocated by
sgx_aligned malloc.

Syntax

void *sgx aligned free (
vold *size,
size t alignment,

align _req t *data,
size t count

)

Parameters
ptr [in]

Pointer to the memory block that has been returned to sgx _aligned mal-
loc.

Description

The sgx aligned free function frees the memory allocated by sgx
aligned malloc. It does not check the input parameter. If the input pointer
has not been previously allocated by sgx aligned malloc,the resultis
unpredictable.

Requirements

Header sgx_secure_align api.h
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

-252 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_calc_sealed_data_size

The sgx calc sealed data size functionisa helper function for the
seal library which should be used to determine how much memory to allocate
for the sgx_sealed_data_t structure.

Syntax
uint32 t sgx calc sealed data size(

const uint32 t add mac_txt size,
const uint32 t txt encrypt size

) ;

Parameters
add_mac_txt_size [in]

Length of the optional additional data stream in bytes. The additional data will
not be encrypted, but will be part of the MAC calculation.

txt_encrypt_size [in]

Length of the data stream to be encrypted in bytes. This data will also be part
of the MAC calculation.

Return value

If the function succeeds, the return value is the minimum number of bytes that
need to be allocated for the sgx_sealed_data_t structure. If the function fails,
the return value is 0OxFFFFFFFEF. It is recommended that you check the return
value before use it to allocate memory.

Description

The function calculates the number of bytes to allocate for the sgx_sealed
data_t structure. The calculation includes the fixed portions of the structure as
well as the two input data streams: encrypted text and optional additional
MAC text.

Requirements

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

-253 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_get_add_mac_txt_len

The sgx_get add mac_txt len functionis a helper function for the seal
library which should be used to determine how much memory to allocate for
the additional MAC text buffer output from the sgx_unseal_data func-
tion.

Syntax
uint32 t sgx get add mac txt len(

const sgx sealed data t *p sealed data

) ;

Parameters
p_sealed_data [in]

Pointer to the sealed data structure which was populated by the sgx_seal_
data function.

Return value

If the function succeeds, the number of bytes in the optional additional MAC
data buffer is returned. If this function fails, the return value is OxFFFFFFFF. It
is recommended that you check the return value before use it to allocate
memory.

Description

The function calculates the minimum number of bytes to allocate for the out-
put MAC data buffer returned by the sgx_unseal data function.

Requirements

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_get_encrypt_txt_len

The sgx _get encrypt txt len functionisa helper function for the seal
library which should be used to calculate the minimum number of bytes to
allocate for decrypted data returned by the sgx_unseal_data function.

Syntax
uint32 t sgx get encrypt txt len(

-254 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

const sgx sealed data t *p sealed data

)

Parameters
p_sealed_data [in]

Pointer to the sealed data structure which was populated during by the sgx_
seal _data function.

Return value

If the function succeeds, the number of bytes in the encrypted data buffer is
returned. Othewise, the return value is OxFFFFFFFF. It is recommended that
you check the return value before use it to allocate memory.

Description

The function calculates the minimum number of bytes to allocate for decryp-
ted data returned by the sgx_unseal_data function.

Requirements

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_seal_data

This function is used to AES-GCM encrypt the input data. Two input data sets
are provided: one is the data to be encrypted; the second is optional addi-
tional data that will not be encrypted but will be part of the GCM MAC cal-
culation which also covers the data to be encrypted.

Syntax
sgx _status t sgx seal data(

const uint32 t additional MACtext length,
const uint8 t * p additional MACtext,
const uint32 t textZencrypt length,

const uint8 t * p textlZencrypt,

const uint32 t sealed data size,
sgx_sealed data t * p sealed data

) ;

Parameters

- 255 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

additional_MACtext_length [in]

Length of the additional Message Authentication Code (MAC) data in bytes.
The additional data is optional and thus the length can be zero if no data is
provided.

p_addtional_MACtext [in]

Pointer to the additional Message Authentication Code (MAC) data. This addi-
tional data is optional and no data is necessary (NULL pointer can be passed,
but additional MACtext length must be zero in this case).

NOTE:

This data will not be encrypted. This data can be within or outside the enclave,
but cannot cross the enclave boundary.

text2encrypt_length [in]
Length of the data stream to be encrypted in bytes. Must be non-zero.
p_text2encrypt [in]

Pointer to the data stream to be encrypted. Must not be NULL. Must be within
the enclave.

sealed_data_size [in]

Number of bytes allocated for the sgx_sealed_data_t structure. The calling
code should utilize helper function sgx calc sealed data sizeto
determine the required buffer size.

p_sealed_data [out]

Pointer to the buffer to store the sealed data.

NOTE:

The calling code must allocate the memory for this buffer and should utilize
helper function sgx calc sealed data size todetermine the required
buffer size. The sealed data must be within the enclave.

Return value
SGX_SUCCESS
Indicates success.

SGX_ERROR_INVALID_PARAMETER

- 256 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Indicates an error if the parameters do not meet any of the following con-
ditions:

o Ifadditional MACtext lengthisnon-zero,p additional MAC-
text cannot be NULL.

e p additional MACtext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

e p_text2encrypt must be non-zero.

e p text2encrypt buffer must be within the enclave.

o sealed data size must be equalto the required buffer size, which
is calculated by the function sgx calc sealed data size.

e p sealed data buffer must be within the enclave.

« Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY
The enclave is out of memory.
SGX_ERROR_UNEXPECTED

Indicates a crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx seal data function retrieves a key unique to the enclave and uses
that key to encrypt the input data buffer. This function can be utilized to pre-
serve secret data after the enclave is destroyed. The sealed data blob can be
unsealed on future instantiations of the enclave.

The additional data buffer will not be encrypted but will be part of the MAC
calculation that covers the encrypted data as well. This data may include
information about the application, version, data, etc which can be utilized to
identify the sealed data blob since it will remain plain text

Use sgx calc sealed data size to calculate the number of bytes to
allocate for the sgx_sealed_data_t structure. The input sealed data buffer and
text2encrypt buffers must be allocated within the enclave.

Requirements

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

-257 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_seal_data_ex

This function is used to AES-GCM encrypt the input data. Two input data sets
are provided: one is the data to be encrypted; the second is optional addi-
tional data that will not be encrypted but will be part of the GCM MAC cal-
culation which also covers the data to be encrypted. This is the expert mode
version of function sgx seal data.

Syntax
sgx _status t sgx seal data ex(

const uintlé_ t key policy,

const sgx attributes t attribute mask,
const sgx misc select t misc mask,

const uint32 t additional MACtext length,
const uint8 t * p additional MACtext,
const uint32 t textZencrypt length,

const uint8 t * p textZencrypt,

const uint32 t sealed data_size,
sgx_sealed data t * p sealed data

) ;

Parameters
key_policy [in]

Specifies the policy to use in the key derivation. Function sgx seal data
uses the MRSIGNER policy.

Key policy name Value Description is detailed in sgx_key_request_t.
attribute_mask [in]

Identifies which platform/enclave attributes to use in the key derivation. See
the definition of sgx_attributes_t to determine which attributes will be
checked. Function sgx_seal_data uses f1ags=0xFF0000000000000B,
xfrm=0.

misc_mask [in]

Identifies the mask bits for the Misc feature to enforce. Function sgx_seal data
uses 0xF0000000.The misc mask bits for the enclave. Reserved for future
function extension.

additional_MACtext_length [in]

Length of the additional data to be MAC'ed in bytes. The additional data is
optional and thus the length can be zero if no data is provided.

-258 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

p_addtional_MACtext [in]

Pointer to the additional data to be MAC'ed of variable length. This additional
data is optional and no data is necessary (NULL pointer can be passed, but
additional MACtext length must be zeroin this case).

NOTE:

This data will not be encrypted. This data can be within or outside the enclave,
but cannot cross the enclave boundary.

text2encrypt_length [in]
Length of the data stream to be encrypted in bytes. Must be non-zero.
p_text2encrypt [in]

Pointer to the data stream to be encrypted of variable length. Must not be
NULL. Must be within the enclave.

sealed_data_size [in]

Number of bytes allocated for sealed data t structure. The calling code
should utilize helper function sgx_calc sealed data size todetermine
the required buffer size.

p_sealed_data [out]
Pointer to the buffer that is populated by this function.

NOTE:
The calling code must allocate the memory for this buffer and should utilize
helper function sgx calc sealed data size todetermine the required
buffer size. The sealed data must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.
SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

e If additional MACtext lengthisnon-zero,p additional
MACtext cannot be NULL.

-259 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

e p_additional MACtext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

e p_text2encrypt must be non-zero.

e p_text2encrypt buffer must be within the enclave.

o sealed data size must be equalto the required buffer size, which
is calculated by the function sgx calc sealed data size.

e p_sealed data buffer must be within the enclave.

« Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY
The enclave is out of memory.
SGX_ERROR_UNEXPECTED

Indicates crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx seal data exisanextended version of sgx seal data.lt
provides parameters for you to identify how to derive the sealing key (key
policy and attributes mask). Typical callers of the seal library should be
able touse sgx_seal data and the default values provided for key
policy (MR SIGNER)and an attribute mask which includes the RESERVED,
INITED and DEBUG bits. Users of this function should have a clear under-
standing of the impact on using a policy and/or attribute mask thatis dif-
ferent from that in sgx_seal data.

Requirement

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.1lib (sim-
ulation)

sgx_unseal_data

This function is used to AES-GCM decrypt the input sealed data structure.
Two output data sets result: one is the decrypted data; the second is the
optional additional data that was part of the GCM MAC calculation but was not
encrypted. This function provides the converse of sgx seal data and

sgx _seal data ex.

Syntax

sgx status t sgx unseal data(

- 260 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

const sgx sealed data t * p sealed data,
uint8 t * p additional MACtext,

uint32 t * p additional MACtext length,
uint8 t * p decrypted text,

uint32 t * p decrypted text length

) ;

Parameters
p_sealed_data [in]

Pointer to the sealed data buffer to be AES-GCM decrypted. Must be within
the enclave.

p_addtional_MACtext [out]

Pointer to the additional data part of the MAC calculation. This additional data
is optional and no data is necessary. The calling code should call helper func-
tion sgx get add mac txt len todetermine the required buffer size to
allocate. (NULL pointer can be passed, ifadditional MACtext lengthis
zero).

p_additional_MACtext_length [in, out]

Pointer to the length of the additional MAC data buffer in bytes. The calling
code should call helper function sgx get add mac txt len todetermine
the minimum required buffer size. The sgx_unseal data function returns
the actual length of decrypted addition data stream.

p_decrypted_text [out]

Pointer to the decrypted data buffer which needs to be allocated by the call-
ing code. Use sgx get encrypt txt len to calculate the minimum num-
ber of bytes to allocate for the p decrypted text buffer.Mustbe
within the enclave.

p_decrypted_text_length [in, out]

Pointer to the length of the decrypted data buffer in byte. The buffer length
of p_decrypted_text must be specifiedinp decrypted text lengthas
input. The sgx _unseal data function returns the actual length of decryp-
ted addition data stream. Use sgx_get encrypt txt len to calculate the
number of bytes to allocate for the p decrypted text buffer. Must be
within the enclave.

Return value
SGX_SUCCESS

- 261 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Indicates success.
SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

o Ifadditional mactext lengthisnon-zero,p additional mac-
text cannot be NULL.

e p _additional mactext buffer can be within or outside the enclave,
but cannot across the enclave boundary.

e p decrypted textandp decrypted text length mustbe
within the enclave.

e p decrypted textandp addtitional MACtext buffer must be
big enough to receive the decrypted data.

e p_sealed data buffer must be within the enclave.

« Input buffers cannot cross an enclave boundary.

SGX_ERROR_INVALID_CPUSVN

The CPUSVN in the sealed data blob is beyond the CPUSVN value of the plat-
form.

SGX_ERROR_INVALID_ISVSVN

The ISVSVN in the sealed data blob is greater than the ISVSVN value of the
enclave.

SGX_ERROR_MAC_MISMATCH

The tag verification failed during unsealing. The error may be caused by a plat-
form update, software update, or sealed data blob corruption. This error is
also reported if other corruption of the sealed data structure is detected.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.
SGX_ERROR_UNEXPECTED

Indicates a cryptography library failure.
Description

The sgx_unseal data function AES-GCM decrypts the sealed data so that
the enclave data can be restored. This function can be utilized to restore

-262 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

secret data that was preserved after an earlier instantiation of this enclave
saved this data.

The calling code needs to allocate the additional data buffer and the decryp-
ted data buffer. To determine the minimum memory to allocate for these buf-
fers, helper functions sgx get add mac txt lenand sgx get
encrypt txt len are provided. The decrypted text buffer must be alloc-
ated within the enclave.

Requirements

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_mac_aadata

This function is used to authenticate the input data with AES-GMAC.
Syntax

sgx _status t sgx mac aadata(

const uint32 t additional MACtext length,
const uint8 t * p additional MACtext,
const uint32 t sealed data size,

sgx sealed data t * p sealed data

) ;

Parameters

additional_MACtext_length [in]

Length of the plain text to provide authentication for in bytes.
p_addtional_MACtext [in]

Pointer to the plain text to provide authentication for.

NOTE:

This data is not encrypted. This data can be within or outside the enclave, but
cannot cross the enclave boundary.

sealed_data_size [in]

-263 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Number of bytes allocated for the sealed data t structure. The calling
code should utilize the helper function sgx calc sealed data sizeto
determine the required buffer size.

p_sealed_data [out]

Pointer to the buffer to store the sealed data t structure.

NOTE:

The calling code must allocate the memory for this buffer and should utilize
the helper function sgx_calc sealed data size withOasthe txt
encrypt size todetermine the required buffer size. The sealed data t
structure must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.
SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-
ditions:

e p additional mactext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

e sealed data size must be equalto the required buffer size, which
is calculated by the function sgx _calc sealed data size.

e p_sealed data buffer must be within the enclave.

« Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY
The enclave is out of memory.
SGX_ERROR_UNEXPECTED

Indicates a crypto library failure, or the RDRAND instruction fails to generate a
random number.

Description

The sgx_mac aadata function retrieves a key unique to the enclave and
uses that key to generate the authentication tag based on the input data buf-
fer. This function can be utilized to provide authentication assurance for addi-
tional data (of practically unlimited length per invocation) that is not

- 264 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

encrypted. The data origin authentication can be demonstrated on future
instantiations of the enclave using the MAC stored into the data blob.

Use sgx calc sealed data size to calculate the number of bytes to
allocate for the sgx_sealed_data_t structure. The input sealed data buffer
must be allocated within the enclave.

Requirements

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_mac_aadata_ex

This function is used to authenticate the input data with AES-GMAC. This is
the expert mode version of the function sgx _mac aadata.

Syntax
sgx status t sgx mac aadata ex(

const uintlé6 t key policy,

const sgx_attributes t attribute mask,
const sgx _misc_select t misc mask,

const uint32 t additional MACtext length,
const uint8 t * p additional MACtext,
const uint32 t sealed data size,

sgx_ sealed data t * p sealed data

) ;

Parameters
key_policy [in]

Specifies the policy to use in the key derivation. Key policy name Value
Description is detailed in sgx_key_request_t. Function sgx mac aadata
uses the MRSIGNER policy.

attribute_mask [in]

Identifies which platform/enclave attributes to use in the key derivation. See
the definition of sgx_attributes_t to determine which attributes will be
checked. Function sgx mac aadata uses flag-
s=0xfffffffffffffff3, xfrm=0.

misc_mask [in]

- 265 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The MISC SELECT mask bits for the enclave. Reserved for future function
extension.

additional_MACtext_length [in]
Length of the plain text data stream to be MAC'ed in bytes.
p_addtional_MACtext [in]

Pointer to the plain text data stream to be MAC'ed of variable length.

NOTE:

This data is not encrypted. This data can be within or outside the enclave, but
cannot cross the enclave boundary.

sealed_data_size [in]

Number of bytes allocated for the sealed data_ t structure. The calling
code should utilize the helper function sgx_calc sealed data sizeto
determine the required buffer size.

p_sealed_data [out]
Pointer to the buffer that is populated by this function.

NOTE:

The calling code must allocate the memory for this buffer and should utilize
the helper function sgx calc sealed data size withOasthe txt
encrypt size todetermine the required buffer size. The sealed data t
structure must be within the enclave.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error if the parameters do not meet any of the following con-

ditions:

e p additional mactext buffer can be within or outside the enclave,
but cannot cross the enclave boundary.

o sealed data size must be equalto the required buffer size, which
is calculated by the function sgx calc sealed data size.

- 266 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

e« p_sealed data buffer must be within the enclave.
« Input buffers cannot cross an enclave boundary.

SGX_ERROR_OUT_OF_MEMORY
The enclave is out of memory.
SGX_ERROR_UNEXPECTED

Indicates crypto library failure or the RDRAND instruction fails to generate a
random number.

Description

The sgx _mac aadata exisanextended version of sgx mac aadata.lt
provides parameters for you to identify how to derive the sealing key (key
policy and attributes mask). Typical callers of the seal library should be
able touse sgx_mac_aadata and the default values provided for key
policy (MR SIGNER)and an attribute mask which includes the RESERVED,
INITED and DEBUG bits. Before you use this function, you should have a clear
understanding of the impact of using a policy and/or attribute mask that
is different from that in sgx_mac aadata.

Requirement

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.1lib (sim-
ulation)

sgx_unmac_aadata

This function is used to verify the authenticity of the input sealed data struc-
ture using AES-GMAC. This function verifies the MAC generated with sgx
mac_ aadataOrsgx mac_ aadata ex.

Syntax

sgx status t sgx unmac aadata (

const sgx sealed data t * p sealed data,
uint8 t * p additional MACtext,
uint32 t * p additional MACtext length,

) ;

Parameters

p_sealed_data [in]

-267 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Pointer to the sealed data structure to be authenticated with AES-GMAC. Must
be within the enclave.

p_addtional_MACtext [out]

Pointer to the plain text data stream that was AES-GMAC protected. You
should call the helper function sgx get add mac txt len todetermine
the required buffer size to allocate.

p_additional_MACtext_length [in, out]

Pointer to the length of the plain text data stream in bytes. Upon successful
tag matching,sgx unmac datasets this parameter with the actual length of
the plaintext stored inp additional MACtext.

Return value
SGX_SUCCESS

The authentication tag inthe sealed data t structure matches the expec-
ted value.

SGX_ERROR_INVALID_PARAMETER

This parameter indicates an error if the parameters do not meet any of the fol-
lowing conditions:

o« p_additional MACtext bufferscan be within or outside the enclave,
but cannot cross the enclave boundary.

e p _addtitional MACtext buffers must be big enough to receive the
plain text data.

e p sealed data buffers must be within the enclave.

« Input buffers cannot cross an enclave boundary.

SGX_ERROR_INVALID_CPUSVN

The CPUSVN in the data blob is beyond the CPUSVN value of the platform.
SGX_ERROR_INVALID_ISVSVN

The ISVSVN in the data blob is greater than the ISVSVN value of the enclave.
SGX_ERROR_MAC_MISMATCH

The tag verification fails. The error may be caused by a platform update, soft-
ware update, or corruption of the sealed data t structure.

SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.

- 268 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNEXPECTED
Indicates a cryptography library failure.
Description

The sgx_unmac_aadata function verifies the tag with AES-GMAC. Use this
function to demonstrate the authenticity of data that was preserved by an
earlier instantiation of this enclave.

You need to allocate additional data buffer. To determine the minimum
memory to allocate for additional data buffers, use the helper function sgx_
get add mac txt len.

Requirements

Header sgx_tseal.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_sha256_msg

The sgx sha256 msg function performs a standard SHA256 hash over the
input data buffer.

Syntax
sgx_status t sgx sha256 msg(
const uint8 t *p src,

uint32 t src_ len,
sgx_sha256 hash t *p hash

) ;

Parameters
p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

p_hash [out]

- 269 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

A pointer to the output 256bit hash resulting from the SHA256 calculation.
This pointer must be non-NULL and the caller allocates memory for this buffer.

Return value

SGX_SUCCESS

The SHA256 hash function is performed successfully.
SGX_ERROR_INVALID_PARAMETER

Input pointers are invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The SHA256 hash calculation failed.

Description

The sgx sha256 msg function performs a standard SHA256 hash over the
input data buffer. Only a 256-bit version of the SHA hash is supported. (Other
sizes, for example 512, are not supported in this minimal cryptography lib-
rary).

The function should be used if the complete input data stream is available.
Otherwise, the Init, Update... Update, Final procedure should be used to com-
pute a SHA256 bit hash over multiple input data sets.

A zero-length input data buffer is supported but the pointer must be non-
NULL.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_sha256_init

sgx_sha256 init returns an allocated and initialized SHA algorithm con-
text state. This should be part of the Init, Update ... Update, Final process

-270 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

when the SHA hash is to be performed over multiple datasets. If a complete
dataset is available, the recommend call is sgx sha256 msg to perform the
hash in a single call.

Syntax
sgx_status t sgx sha256 init(

sgx_sha state handle t* p sha handle

) ;

Parameters
p_sha_handle [out]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA256 state is allocated and initialized properly.
SGX_ERROR_INVALID_PARAMETER

The pointerp sha handle isinvalid.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The SHA256 state is not initialized properly due to an internal cryptography
library failure.

Description

Calling sgx sha256 init isthe first set in performing a SHA256 hash over
multiple datasets. The caller does not allocate memory for the SHA256 state
that this function returns. The state is specific to the implementation of the
cryptography library; thus the allocation is performed by the library itself. If
the hash over the desired datasets is completed or any error occurs during

-271-

Intel® Software Guard Extensions Developer Reference for Windows* OS

the hash calculation process, sgx sha256 close should be called to free
the state allocated by this algorithm.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_sha256_update

sgx_sha256 update performsaSHA256 hash over the input dataset
provided. This function supports an iterative calculation of the hash over mul-
tiple datasets where the sha_handle contains the intermediate results of the
hash calculation over previous datasets.

Syntax
sgx _status_t sgx sha256 update (
const uint8 t *p src,

uint32 t src_len,
sgx_sha state handle t sha handle

) ;

Parameters
p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

-272 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The input parameter(s) are NULL.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred while performing the
SHA256 hash calculation.

Description

This function should be used as part of a SHA256 calculation over multiple
datasets. If a SHA256 hash is needed over a single data set, function sgx
sha256 msg should be used instead. Prior to calling this function on the first
dataset, the sgx_sha256 _init function must be called first to allocate and ini-
tialize the SHA256 state structure which will hold intermediate hash results
over earlier datasets. The function sgx sha256 get hash should be used
to obtain the hash after the final dataset has been processed by this function.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_sha256_get_hash

sgx_sha256 get hash obtains the SHA256 hash after the final dataset has
been processed (by callsto sgx sha256 update).

Syntax
sgx status t sgx sha256 get hash(

sgx_sha state handle t sha handle,
sgx_sha256 _hash t* p hash

)
Parameters
sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple datasets.

-273 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

p_hash [out]

This is a pointer to the 256-bit hash that has been calculated. The memory for
the hash should be allocated by the calling code.

Return value

SGX_SUCCESS

The hash is obtained successfully.
SGX_ERROR_INVALID_PARAMETER
The pointers are NULL.
SGX_ERROR_UNEXPECTED

The SHA256 state passed in is likely problematic causing an internal cryp-
tography library failure.

Description

This function returns the hash after performing the SHA256 calculation over
one or more datasets using the sgx sha256 update function. Memory for
the hash should be allocated by the calling function. The handle to SHA256
state used inthe sgx sha256 update calls must be passed in as input.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_sha256_close

sgx_sha256 close cleans up and deallocates the SHA256 state that was
allocated in function sgx sha256 init.

Syntax
sgx status t sgx sha256 close(

sgx_sha state handle t sha handle

) ;

-274 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Parameters
sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA256 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA256 state was deallocated successfully.
SGX_ERROR_INVALID_PARAMETER

The input handle is NULL.

Description

Calling sgx_sha256 close isthe last step after performing a SHA256 hash
over multiple datasets. The caller uses this function to deallocate memory
used to store the SHA256 calculation state.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_sha384_msg

The sgx_sha384 msg function performs a standard SHA384 hash over the
input data buffer.

Syntax
sgx_status t sgx sha384 msg(
const uint8 t *p src,

uint32 t src_len,
sgx sha384 hash t *p hash

) ;

Parameters

-275 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

p_hash [out]

A pointer to the output 384bit hash resulting from the SHA384 calculation.
This pointer must be non-NULL and the caller allocates memory for this buffer.

Return value

SGX_SUCCESS

The SHA384 hash function is performed successfully.
SGX_ERROR_INVALID_PARAMETER

Input pointers are invalid.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The SHA384 hash calculation failed.

Description

The sgx sha384 msg function performs a standard SHA384 hash over the
input data buffer. Only a 384-bit version of the SHA hash is supported. (Other
sizes, for example 512, are not supported in this minimal cryptography lib-
rary).

The function should be used if the complete input data stream is available.
Otherwise, the Init, Update... Update, Final procedure should be used to com-
pute a SHA384 bit hash over multiple input data sets.

A zero-length input data buffer is supported but the pointer must be non-
NULL.

-276 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_sha384_init

sgx_sha384 init returns an allocated and initialized SHA algorithm con-
text state. This should be part of the Init, Update ... Update, Final process
when the SHA hash is to be performed over multiple datasets. If a complete
dataset is available, the recommend call is sgx sha384 msg to perform the
hash in a single call.

Syntax
sgx_status t sgx sha384 init(

sgx_sha state handle t* p sha handle

) ;

Parameters
p_sha_handle [out]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA384 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA384 state is allocated and initialized properly.
SGX_ERROR_INVALID_PARAMETER

The pointerp _sha handle isinvalid.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The SHA384 state is not initialized properly due to an internal cryptography
library failure.

-277 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Description

Calling sgx sha384 init isthe first set in performing a SHA384 hash over
multiple datasets. The caller does not allocate memory for the SHA384 state
that this function returns. The state is specific to the implementation of the
cryptography library; thus the allocation is performed by the library itself. If
the hash over the desired datasets is completed or any error occurs during
the hash calculation process, sgx sha384 close should be called to free
the state allocated by this algorithm.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_sha384_update

sgx_sha384 update performsa SHA384 hash over the input dataset
provided. This function supports an iterative calculation of the hash over mul-
tiple datasets where the sha_handle contains the intermediate results of the
hash calculation over previous datasets.

Syntax
sgx_status_t sgx sha384 update (
const uint8 t *p src,

uint32 t src_len,
sgx_sha state handle t sha handle

) ;

Parameters
p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

sha_handle [in]

-278 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA384 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The input parameter(s) are NULL.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred while performing the
SHA384 hash calculation.

Description

This function should be used as part of a SHA384 calculation over multiple
datasets. If a SHA384 hash is needed over a single data set, function sgx
sha384 msg should be used instead. Prior to calling this function on the first
dataset, the sgx_sha384 _init function must be called first to allocate and ini-
tialize the SHA384 state structure which will hold intermediate hash results
over earlier datasets. The function sgx sha384 get hash should be used
to obtain the hash after the final dataset has been processed by this function.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_sha384_get_hash

sgx_sha384 get hash obtains the SHA384 hash after the final dataset has
been processed (by calls to sgx sha384 update).

Syntax
sgx status t sgx sha384 get hash(

sgx_ sha state handle t sha handle,
sgx_sha384 hash t* p hash

-279 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

)
Parameters
sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA384 hash. The algorithm stores the intermediate results
of performing the hash calculation over multiple datasets.

p_hash [out]

This is a pointer to the 384-bit hash that has been calculated. The memory for
the hash should be allocated by the calling code.

Return value

SGX_SUCCESS

The hash is obtained successfully.
SGX_ERROR_INVALID_PARAMETER
The pointers are NULL.
SGX_ERROR_UNEXPECTED

The SHA384 state passed in is likely problematic causing an internal cryp-
tography library failure.

Description

This function returns the hash after performing the SHA384 calculation over
one or more datasets using the sgx sha384 update function. Memory for
the hash should be allocated by the calling function. The handle to SHA384
state used inthe sgx sha384 update calls must be passed in as input.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

- 280 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_sha384_close

sgx_sha384 close cleans up and deallocates the SHA384 state that was
allocated in function sgx sha384 init.

Syntax

sgx status t sgx sha384 close(

sgx_sha state handle t sha handle

) ;

Parameters
sha_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative SHA384 hash. The algorithm stores the intermediate results
of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The SHA384 state was deallocated successfully.
SGX_ERROR_INVALID_PARAMETER

The input handle is NULL.

Description

Calling sgx_sha384 close isthe last step after performing a SHA384 hash
over multiple datasets. The caller uses this function to deallocate memory
used to store the SHA384 calculation state.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

-281 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_rijndael128GCM_encrypt

sgx_rijndaell28GCM encrypt performs a Rijndael AES-GCM encryption
operation. Only a 128bit key size is supported by this Intel® SGX SDK cryp-
tography library.

Syntax
sgx_status t sgx rijndaell28GCM encrypt (

const sgx_aes_gcm_128bit key t *p_ key,
const uint8 t *p src,

uint32 t src len,

uint8 t *p dst,

const uint8 t *p iv,

uint32 t iv_len,

const uint8 t *p aad,

uint32 t aad len,
sgx_aes_gcm_128bit tag t *p out mac

) ;
Parameters
p_key [in]

A pointer to key to be used in the AES-GCM encryption operation. The size
must be 128 bits.

p_src [in]

A pointer to the input data stream to be encrypted. Buffer could be NULL if
there is AAD text.

src_len [in]

Specifies the length on the input data stream to be encrypted. This could be
zerobutp srcandp dst should be NULL and aad len must be greater
than zero.

p_dst [out]

A pointer to the output encrypted data buffer. This buffer should be allocated
by the calling code.

p_iv [in]

A pointer to the initialization vector to be used in the AES-GCM calculation.
NIST AES-GCM recommended IV size is 96 bits (12 bytes).

iv_len [in]

-282 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Specifies the length on input initialization vector. The length should be 12 as
recommended by NIST.

p_aad [in]

A pointer to an optional additional authentication data buffer which is used in
the GCM MAC calculation. The data in this buffer will not be encrypted. The
field is optional and could be NULL.

aad_len [in]

Specifies the length of the additional authentication data buffer. This buffer is
optional and thus the size can be zero.

p_out_mac [out]

This is the output GCM MAC performed over the input data buffer (data to be
encrypted) as well as the additional authentication data (this is optional data).
The calling code should allocate this buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

If key, MAC, or IV pointer is NULL.

If AAD size is > 0 and the AAD pointer is NULL.

If source size is > 0 and the source pointer or destination pointer are NULL.
If both source pointer and AAD pointer are NULL.

If IV Length is not equal to 12 (bytes).
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.
Description

The Galois/Counter Mode (GCM) is a mode of operation of the AES algorithm.
GCM [NIST SP 800-38D] uses a variation of the counter mode of operation for
encryption. GCM assures authenticity of the confidential data (of up to about

-283 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

64 GB per invocation) using a universal hash function defined over a binary
finite field (the Galois field).

GCM can also provide authentication assurance for additional data (of prac-
tically unlimited length per invocation) that is not encrypted. GCM provides
stronger authentication assurance than a (non-cryptographic) checksum or
error detecting code. In particular, GCM can detect both accidental modi-
fications of the data and intentional, unauthorized modifications.

It is recommended that the source and destination data buffers are allocated
within the enclave. The AAD buffer could be allocated within or outside
enclave memory. The use of AAD data buffer could be information identifying
the encrypted data since it will remain in clear text.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_rijndael128GCM_decrypt

sgx_rijndaell28GCM decrypt performs a Rijndael AES-GCM decryption
operation. Only a 128bit key size is supported by this Intel® SGX SDK cryp-
tography library.

Syntax
sgx status t sgx rijndaell28GCM decrypt (

const sgx aes gcm 128bit key t *p key,
const uint8 t *p src,

uint32 t src_len,

uint8 t *p dst,

const uint8 t *p iv,

uint32 t iv_len,

const uint8 t *p aad,

uint32 t aad len,

const sgx aes gcm 128bit tag t *p in mac

) ;

Parameters
p_key [in]

A pointer to key to be used in the AES-GCM decryption operation. The size
must be 128 bits.

p_src [in]

-284 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

A pointer to the input data stream to be decrypted. Buffer could be NULL if
there is AAD text.

src_len [in]

Specifies the length on the input data stream to be decrypted. This could be
zerobutp srcandp dst should be NULLand aad len must be greater
than zero.

p_dst [out]

A pointer to the output decrypted data buffer. This buffer should be allocated
by the calling code.

p_iv [in]

A pointer to the initialization vector to be used in the AES-GCM calculation.
NIST AES-GCM recommended IV size is 96 bits (12 bytes).

iv_len [in]

Specifies the length on input initialization vector. The length should be 12 as
recommended by NIST.

p_aad [in]

A pointer to an optional additional authentication data buffer which is
provided for the GCM MAC calculation when encrypting. The data in this buf-
fer was not encrypted. The field is optional and could be NULL.

aad_len [in]

Specifies the length of the additional authentication data buffer. This buffer is
optional and thus the size can be zero.

p_in_mac [in]

This is the GCM MAC that was performed over the input data buffer (data to
be encrypted) as well as the additional authentication data (this is optional
data) during the encryption process (call to sgx rijndaell28GCM
encrypt).

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

- 285 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

If key, MAC, or IV pointer is NULL.

If AAD size is > 0 and the AAD pointer is NULL.

If source size is > 0 and the source pointer or destination pointer are NULL.
If both source pointer and AAD pointer are NULL.

If IV Length is not equal to 12 (bytes).

SGX_ERROR_MAC_MISMATCH

The input MAC does not match the MAC calculated.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

The Galois/Counter Mode (GCM) is a mode of operation of the AES algorithm.
GCM [NIST SP 800-38D] uses a variation of the counter mode of operation for
encryption. GCM assures authenticity of the confidential data (of up to about
64 GB per invocation) using a universal hash function defined over a binary
finite field (the Galois field).

GCM can also provide authentication assurance for additional data (of prac-
tically unlimited length per invocation) that is not encrypted. GCM provides
stronger authentication assurance than a (non-cryptographic) checksum or
error detecting code. In particular, GCM can detect both accidental modi-
fications of the data and intentional, unauthorized modifications.

It is recommended that the destination data buffer is allocated within the
enclave. The AAD buffer could be allocated within or outside enclave memory.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

- 286 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_rijndael128_cmac_msg

The sgx rijndaell28 cmac msg function performs a standard 128bit
CMAC hash over the input data buffer.

Syntax

sgx _status t sgx rijndaell28 cmac msg (
const sgx_cmac_128bit key t *p key,
const uint8 t *p src,

uint32 t src_len,
sgx_cmac_128bit tag t *p mac

)

Parameters
p_key [in]

A pointer to key to be used in the CMAC hash operation. The size must be 128
bits.

p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

p_mac [out]

A pointer to the output 128-bit hash resulting from the CMAC calculation. This
pointer must be non-NULL and the caller allocates memory for this buffer.

Return value

SGX_SUCCESS

The CMAC hash function is performed successfully.
SGX_ERROR_INVALID_PARAMETER

The key, source or MAC pointer is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

-287 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNEXPECTED
An unexpected internal cryptography library.

Description

The sgx rijndaell28 cmac msg function performs a standard CMAC
hash over the input data buffer. Only a 128-bit version of the CMAC hash is
supported.

The function should be used if the complete input data stream is available.
Otherwise, the Init, Update... Update, Final procedure should be used to com-
pute a CMAC hash over multiple input data sets.

A zero-length input data buffer is supported, but the pointer must be non-
NULL.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_cmac128_init

sgx_cmacl28 init returnsan allocated and initialized CMAC algorithm con-
text state. This should be part of the Init, Update ... Update, Final process

when the CMAC hash is to be performed over multiple datasets. If a complete
dataset is available, the recommended call is sgx _rijndaell28 cmac
msg to perform the hash in a single call.

Syntax
sgx_ status t sgx cmacl28 init(

const sgx_cmac_1l28bit key t *p key,
sgx_cmac_state handle t* p cmac handle

)

Parameters
p_key [in]

A pointer to key to be used in the CMAC hash operation. The size must be 128
bits.

-288 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

p_cmac_handle [out]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC 128-bit hash. The algorithm stores the intermediate
results of performing the hash calculation over data sets.

Return value

SGX_SUCCESS

The CMAC hash state is successfully allocated and initialized.
SGX_ERROR_INVALID_PARAMETER

The key or handle pointer is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

Calling sgx cmacl28 init isthe first set in performing a CMAC 128-bit
hash over multiple datasets. The caller does not allocate memory for the
CMAC state that this function returns. The state is specific to the imple-
mentation of the cryptography library and thus the allocation is performed by
the library itself. If the hash over the desired datasets is completed or any
error occurs during the hash calculation process, sgx_cmac128_close should
be called to free the state allocated by this algorithm.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_cmac128_update

sgx_cmacl28 update performsa CMAC 128-bit hash over the input data-
set provided. This function supports an iterative calculation of the hash over

- 289 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

multiple datasets where the cmac_handle contains the intermediate results of
the hash calculation over previous datasets.

Syntax
sgx status t sgx cmacl28 update (
const uint8 t *p src,

uint32 t src_len,
sgx_cmac_state handle t cmac_ handle

)

Parameters
p_src [in]

A pointer to the input data stream to be hashed. A zero length input buffer is
supported, but the pointer must be non-NULL.

src_len [in]

Specifies the length on the input data stream to be hashed. A zero length
input buffer is supported.

cmac_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The source pointer or cmac handle is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred while performing the CMAC
hash calculation.

NOTE:

- 290 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

If an unexpected error occurs, then the CMAC state is not freed (CMAC
handle). In this case, call sgx _cmac128 close tofree the CMAC state to
avoid memory leak.

Description

This function should be used as part of a CMAC 128-bit hash calculation over
multiple datasets. If a CMAC hash is needed over a single data set, function
sgx_rijndaell28 cmacl28 msg should be used instead. Prior to calling
this function on the first dataset, the sgx _cmac128 init function must be
called first to allocate and initialize the CMAC state structure which will hold
intermediate hash results over earlier datasets. The function sgx cmacl128
final should be used to obtain the hash after the final dataset has been pro-
cessed by this function.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_cmac128_final

sgx_cmacl28 final obtainsthe CMAC 128-bit hash after the final dataset
has been processed (by calls to sgx_cmac128_update).

Syntax
sgx status t sgx cmacl28 final(

sgx_cmac_state handle t cmac_ handle,
sgx_cmac_128bit tag t* p hash

) ;

Parameters
cmac_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

p_hash [out]

-291 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

This is a pointer to the 128-bit hash that has been calculated. The memory for
the hash should be allocated by the calling code.

Return value

SGX_SUCCESS

The hash is obtained successfully.
SGX_ERROR_INVALID_PARAMETER

The hash pointer or CMAC handle is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The CMAC state passed in is likely problematic causing an internal cryp-
tography library failure.

NOTE:

If an unexpected error occurs, then the CMAC state is freed (CMAC handle). In
this case, please call sgx_cmac128_close to free the CMAC state to avoid
memory leak.

Description

This function returns the hash after performing the CMAC 128-bit hash cal-
culation over one or more datasets using the sgx cmacl128 update func-
tion. Memory for the hash should be allocated by the calling code. The handle
to CMAC state used inthe sgx cmac128 update calls must be passed in
as input.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_cmac128_close

sgx_cmacl28 close cleans up and deallocates the CMAC algorithm con-
text state that was allocated in function sgx cmacl128 init.

Syntax

sgx _status t sgx cmacl28 close(

-292 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_cmac_state handle t cmac_ handle

)

Parameters
cmac_handle [in]

This is a handle to the context state used by the cryptography library to per-
form an iterative CMAC hash. The algorithm stores the intermediate results of
performing the hash calculation over multiple data sets.

Return value

SGX_SUCCESS

The CMAC state was deallocated successfully.
SGX_ERROR_INVALID_PARAMETER

The CMAC handle is NULL.

Description

Calling sgx _cmacl28 close isthe last step after performing a CMAC hash
over multiple datasets. The caller uses this function to deallocate memory
used for storing the CMAC algorithm context state.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_aes_ctr_encrypt

sgx_aes ctr encrypt performs aRijndael AES-CTR encryption operation
(counter mode). Only a 128bit key size is supported by this Intel® SGX SDK
cryptography library.

Syntax
sgx status t sgx aes ctr encrypt(

const sgx_aes_ctr 128bit key t *p key,
const uint8 t *p src,

const uint32 t src_len,

uint8 t *p ctr,

const uint32 t ctr_inc_bits,

uint8 t *p dst,

-293 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

)

Parameters
p_key [in]

A pointer to key to be used in the AES-CTR encryption operation. The size
must be 128 bits.

p_src [in]

A pointer to the input data stream to be encrypted.

src_len [in]

Specifies the length on the input data stream to be encrypted.

p_ctr [in]

A pointer to the initialization vector to be used in the AES-CTR calculation.
ctr_inc_bits [in]

Specifies the number of bits in the counter to be incremented.

p_dst [out]

A pointer to the output encrypted data buffer. This buffer should be allocated
by the calling code.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

If key, source, destination, or counter pointer is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

-294 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

This function encrypts the input data stream of a variable length according to
the CTR mode as specified in [NIST SP 800-38A]. The counter can be thought
of as an IV which increments on successive encryption or decryption calls. For
a given dataset or data stream, the incremented counter block should be used
on successive calls of the encryption process for that given stream. However,
for new or different datasets/streams, the same counter should not be reused,
instead initialize the counter for the new data set.

It is recommended that the source, destination and counter data buffers are
allocated within the enclave.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_aes_ctr_decrypt

sgx_aes ctr decrypt performs a Rijndael AES-CTR decryption operation
(counter mode). Only a 128bit key size is supported by this Intel® SGX SDK
cryptography library.

Syntax

sgx _status t sgx aes ctr decrypt(

const sgx_aes_gcm_128bit key t *p key,
const uint8 t *p src,

const uint32 t src_len,

uint8 t *p ctr,

const uint32 t ctr inc bits,

uint8 t *p dst

) ;

Parameters
p_key [in]

A pointer to key to be used in the AES-CTR decryption operation. The size
must be 128 bits.

p_src [in]
A pointer to the input data stream to be decrypted.

src_len [in]

- 295 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Specifies the length of the input data stream to be decrypted.

p_ctr [in]

A pointer to the initialization vector to be used in the AES-CTR calculation.
ctr_inc_bits [in]

Specifies the number of bits in the counter to be incremented.

p_dst [out]

A pointer to the output decrypted data buffer. This buffer should be allocated
by the calling code.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

If key, source, destination, or counter pointer is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.

Description

This function decrypts the input data stream of a variable length according to
the CTR mode as specified in [NIST SP 800-38A]. The counter can be thought
of as an IV which increments on successive encryption or decryption calls. For
a given dataset or data stream, the incremented counter block should be used
on successive calls of the decryption process for that given stream. However,
for new or different datasets/streams, the same counter should not be reused,
instead initialize the counter for the new data set.

It is recommended that the source, destination and counter data buffers are
allocated within the enclave.

Requirements

- 296 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_ecc256_open_context

sgx_ecc256 open context returns an allocated and initialized context
for the elliptic curve cryptosystem over a prime finite field, GF(p). This context
must be created prior to calling sgx _ecc256 create key pairorsgx
ecc256 compute shared dhkey.When the calling code has completed
its set of ECC operations, sgx _ecc256 close context should be called to
cleanup and deallocate the ECC context.

NOTE:
Only a field element size of 256 bits is supported.

Syntax
sgx_status_t sgx _ecc256 open context (

sgx_ecc_state handle t *p_ ecc handle

) ;

Parameters
p_ecc_handle [out]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The ECC256 GF(p) state is allocated and initialized properly.
SGX_ERROR_INVALID_PARAMETER

The ECC context handle is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

SGX_ERROR_UNEXPECTED

-297 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The ECC context state was not initialized properly due to an internal cryp-
tography library failure.

Description

sgx_ecc256 open context is utilized to allocate and initialize a 256-bit
GF(p) cryptographic system. The caller does not allocate memory for the ECC
state that this function returns. The state is specific to the implementation of
the cryptography library and thus the allocation is performed by the library
itself. If the ECC cryptographic function using this cryptographic system is com-
pleted or any error occurs, sgx _ecc256 close context should be called
to free the state allocated by this algorithm.

Public key cryptography successfully allows to solving problems of information
safety by enabling trusted communication over insecure channels. Although
elliptic curves are well studied as a branch of mathematics, an interest to the
cryptographic schemes based on elliptic curves is constantly rising due to the
advantages that the elliptic curve algorithms provide in the wireless com-
munications: shorter processing time and key length.

Elliptic curve cryptosystems (ECCs) implement a different way of creating pub-
lic keys. As elliptic curve calculation is based on the addition of the rational
points in the (x,y) plane and it is difficult to solve a discrete logarithm from
these points, a higher level of safety is achieved through the cryptographic
schemes that use the elliptic curves. The cryptographic systems that encrypt
messages by using the properties of elliptic curves are hard to attack due to
the extreme complexity of deciphering the private key.

Using of elliptic curves allows shorter public key length and encourages cryp-
tographers to create cryptosystems with the same or higher encryption
strength as the RSA or DSA cryptosystems. Because of the relatively short key
length, ECCs do encryption and decryption faster on the hardware that
requires less computation processing volumes.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_ecc256_close_context

sgx_ecc256 close context cleans up and deallocates the ECC 256 GF
(p) state that was allocated in function sgx_ecc256 open context.

-298 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

NOTE:
Only a field element size of 256 bits is supported.

Syntax
sgx_status t sgx eccZ256 close context (

sgx_ecc_state handle t ecc_ handle

)

Parameters
ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The ECC 256 GF(p) state was deallocated successfully.
SGX_ERROR_INVALID_PARAMETER

The input handle is NULL.

Description

sgx_ecc256 close context isused by calling code to deallocate
memory used for storing the ECC 256 GF(p) state used in ECC cryptographic
calculations.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

-299 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_ecc256_create_key_pair

sgx_ecc256 create key pair generates a private/public key pair on
the ECC curve for the given cryptographic system. The calling code is respons-
ible for allocating memory for the public and private keys. sgx ecc256
open context must be called to allocate and initialize the ECC context prior
to making this call.

Syntax
sgx_status t sgx ecc256 create key pair(
sgx_ec256_private t *p private,

sgx_ec256 _public t *p public,
sgx_ecc_state handle t ecc handle

) ;

Parameters
p_private [out]

A pointer to the private key which is a number that lies in the range of [1, n-1]
where n is the order of the elliptic curve base point.

NOTE:
Value is LITTLE ENDIAN.

p_public [out]
A pointer to the public key which is an elliptic curve point such that:

public key = private key * G, where G is the base point of the elliptic curve.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

- 300 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The public/private key pair was successfully generated.
SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key or public key is invalid.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The key creation process failed due to an internal cryptography library failure.
Description

This function populates private/public key pair. The calling code allocates
memory for the private and public key pointers to be populated. The function
generates a private key p_ private and computes a public key p public of
the elliptic cryptosystem over a finite field GF(p).

The private key p_private isanumber that liesin the range of [1, n-1]
where n is the order of the elliptic curve base point.

The public key p publicisan elliptic curve point suchthatp public =
p private *G,where G isthe base point of the elliptic curve.

The context of the point p public asan elliptic curve point must be created
by using the function sgx_ecc256 open context.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_ecc256_compute_shared_dhkey

sgx_ecc256 compute shared dhkey generates a secret key shared
between two participants of the cryptosystem. The calling code should alloc-
ate memory for the shared key to be generated by this function.

Syntax

sgx_status t sgx ecc256 compute shared dhkey(
const sgx ec256 private t *p private b,
const sgx ec256 public t *p public ga,

sgx_ec256 dh shared t *p shared key,
sgx_ecc_state handle t ecc handle

- 301 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

)

Parameters
p_private_b [in]

A pointer to the local private key.

NOTE:
Value is LITTLE ENDIAN.

p_public_ga [in]

A pointer to the remote public key.

NOTE:
Value is LITTLE ENDIAN.

p_shared_key [out]

A pointer to the secret key generated by this function which is a common
point on the elliptic curve.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

SGX_SUCCESS

The public/private key pair was successfully generated.
SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key, public key, or shared key pointer is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.

-302 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNEXPECTED
The key creation process failed due to an internal cryptography library failure.
Description

This function computes the Diffie-Hellman shared key based on the enclave’s
own (local) private key and remote enclave’s public Ga Key. The calling code
allocates memory for shared key to be populated by this function.

The function computes a secret number sharedKey, which is a secret key
shared between two participants of the cryptosystem.

In cryptography, metasyntactic names such as Alice as Bob are normally used
as examples and in discussions and stand for participant A and participant B.

Both participants (Alice and Bob) use the cryptosystem for receiving a com-
mon secret point on the elliptic curve called a secret key (sharedKey). To
receive a secret key, participants apply the Diffie-Hellman key-agreement
scheme involving public key exchange. The value of the secret key entirely
depends on participants.

According to the scheme, Alice and Bob perform the following operations:
1. Alice calculates her own public key pubKeyA by using her private key

privKkeyA: pubKeyA = privKeyA * G,where G isthe base point of the
elliptic curve.

2. Alice passes the public key to Bob.
3. Bob calculates his own public key pubKeyB by using his private key

privKeyB: pubKeyB = privKeyB * G,where G isa base point of the elliptic
curve.

4. Bob passes the public key to Alice.

5. Alice gets Bob's public key and calculates the secret point shareKeyA. When
calculating, she uses her own private key and Bob's public key and applies the
following formula:

shareKeyA = privKeyA * pubKeyB = privKeyA * privKeyB *
G.

6. Bob gets Alice's public key and calculates the secret point shareKeyB. When
calculating, he uses his own private key and Alice's public key and applies the
following formula:

-303 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

shareKeyB = privKeyB * pubKeyA = privKeyB * privKeyA *
G.

As the following equation is true privKeyA * privKeyB * G =
privKeyB * privKeyA * G,the result of both calculations is the same,
that is, the equation shareKeyA = shareKeyB is true. The secret point serves as
a secret key.

Shared secret shareKey is an x-coordinate of the secret point on the elliptic
curve. The elliptic curve domain parameters must be hitherto defined by the
function: sgx _ecc256 open context

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_ecc256_check_point

sgx_ecc256 check point checks whether the input point is a valid point
on the ECC curve for the given cryptographic system. sgx _ecc256 open
context must be called to allocate and initialize the ECC context prior to
making this call.

Syntax

sgx_status t sgx ecc256 check point (
const sgx_ec256 public t *p point,
const sgx ecc state handle t ecc handle,

int *p valid

) ;

Parameters
p_point [in]

A pointer to the point to perform validity check on.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

-304 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

p_valid [out]

A pointer to the validation result.
Return value

SGX_SUCCESS

The validation process is performed successfully. Check p_valid to get the val-
idation result.

SGX_ERROR_INVALID_PARAMETER

If the input ecc handle, p_point or p_valid is NULL.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

An internal cryptography library failure occurred.
Description

sgx_ecc256 check point validates whether the input point is a valid
point on the ECC curve for the given cryptographic system.

The typical validation result is one of the two values:
1 - The input point is valid
0 — The input point is not valid

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_ecdsa_sign

sgx_ecdsa sign computes a digital signature with a given private key over
an input dataset.

-305 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Syntax
sgx_status t sgx ecdsa sign/(
const uint8 t *p data,
uint32 t data_size,
const sgx_ec256 private t *p private,

sgx_ec256_signature t *p signature,
sgx_ecc_state handle t ecc handle

) ;

Parameters

p_data [in]

A pointer to the data to calculate the signature over.
data_size [in]

The size of the data to be signed.

p_private [in]

A pointer to the private key.

NOTE:
Value is LITTLE ENDIAN.

p_signature [out]

A pointer to the signature generated by this function.

NOTE:
Value is LITTLE ENDIAN.

ecc_handle [in]

This is a handle to the ECC GF(p) context state allocated and initialized used
to perform elliptic curve cryptosystem standard functions. The algorithm
stores the intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value
SGX_SUCCESS

The digital signature is successfully generated.

- 306 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, private key, data, or signature pointer is NULL. Or the
data size is O.

SGX_ERROR_OUT_OF_MEMORY
Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The signature generation process failed due to an internal cryptography lib-
rary failure.

Description

This function computes a digital signature over the input dataset based on the
input private key.

A message digest is a fixed size number derived from the original message
with an applied hash function over the binary code of the message. (SHA256
in this case)

The signer's private key and the message digest are used to create a sig-
nature.

A digital signature over a message consists of a pair of large numbers, 256-bits
each, which the given function computes.

The scheme used for computing a digital signature is of the ECDSA scheme, an
elliptic curve of the DSA scheme.

The keys can be generated and set up by the function: sgx ecc256 cre-
ate key pair.

The elliptic curve domain parameters must be created by function: sgx
ecc256_open context.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_ecdsa_verify

sgx_ecdsa verify verifies the input digital signature with a given public
key over an input dataset.

-307 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Syntax
sgx_ status t sgx ecdsa verify(
const uint8 t *p data,
uint32 t data_size,
const sgx_ec256 public t *p public,
const sgx_ec256_ signature t *p signature,

uint8 t *p result,
sgx_ecc_state handle t ecc handle

) ;

Parameters

p_data [in]

Pointer to the signed dataset to verify.
data_size [in]

Size of the dataset to have its signature verified.
p_public [in]

Pointer to the public key to be used in the calculation of the signature.

NOTE:
Value is LITTLE ENDIAN.

p_signature [in]

Pointer to the signature to be verified.

NOTE:
Value is LITTLE ENDIAN.

p_result [out]
Pointer to the result of the verification check populated by this function.
ecc_handle [in]

Handle to the ECC GF(p) context state allocated and initialized used to per-
form elliptic curve cryptosystem standard functions. The algorithm stores the
intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only support a 256-bit GF(p) cryptography system.

Return value

- 308 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_SUCCESS

Digital signature verification was performed successfully. Check p_result to get
the verification result.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, public key, data, result or signature pointer is NULL,
or the data size is O.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

Verification process failed due to an internal cryptography library failure.
Description

This function verifies the signature for the given data set based on the input
public key.

A digital signature over a message consists of a pair of large numbers, 256-bits
each, which could be created by function: sgx ecdsa sign. The scheme
used for computing a digital signature is of the ECDSA scheme, an elliptic
curve of the DSA scheme.

The typical result of the digital signature verification is one of the two values:
SGX EC VALID - Digital signature is valid
SGX EC INVALID SIGNATURE - Digital signature is not valid

The elliptic curve domain parameters must be created by function: sgx
ecc256_ open context.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_rsa3072_sign

sgx_rsa3072 sign computes adigital signature for a given dataset based
on RSA 3072 private key.

Syntax

- 3009 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx status t sgx rsa3072 sign(
const uint8 t *p data,
uint32 t data size,

const sgx_rsa3072 key t *p key,
sgx_rsa3072 signature t *p signature

) ;

Parameters

p_data [in]

A pointer to the data to calculate the signature over.
data_size [in]

The size of the data to be signed.

p_key [in]

A pointer to the RSA key.

NOTE:
Value is LITTLE ENDIAN.

p_signature [out]

A pointer to the signature generated by this function.

NOTE:
Value is LITTLE ENDIAN.

Return value

SGX_SUCCESS

The digital signature is successfully generated.
SGX_ERROR_INVALID_PARAMETER

The private key, data, or signature pointer is NULL. Or the data size is O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The signature generation process failed due to an internal cryptography lib-
rary failure.

Description

-310 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

This function computes a digital signature over the input dataset based on the
RSA 3072 key.

A message digest is a fixed size number derived from the original message
with an applied hash function over the binary code of the message. (SHA256
in this case)

The signer's private key and the message digest are used to create a sig-
nature.

The scheme used for computing a digital signature is of the RSASSA-PKCS1-
v1_5 scheme.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_rsa3072_sign_ex

sgx_rsa3072 sign ex computes a digital signature for a given dataset
based on the RSA 3072 private key and the optional corresponding RSA
3072 public key.
Syntax
sgx status t sgx rsa3072 sign ex(

const uint8 t *p data,

uint32 t data_ size,

const sgx_rsa3072 key t *p key,

const sgx_rsa3072 public key t *p public,
sgx_rsa3072 signature t *p signature

) ;

Parameters

p_data [in]

A pointer to the data to calculate the signature over.
data_size [in]

The size of the data to be signed.

p_key [in]

-311 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

A pointer to the RSA private key.

NOTE:
Value is LITTLE ENDIAN.

p_public [in]
A pointer to the RSA public key. Can be NULL.

NOTE:
Value is LITTLE ENDIAN.

p_signature [out]

A pointer to the signature generated by this function.

NOTE:
Value is LITTLE ENDIAN.

Return value

SGX_SUCCESS

The digital signature is successfully generated.
SGX_ERROR_INVALID_PARAMETER

The private key, data, or signature pointer is NULL. Or the data size is 0. Or the
RSA private key and the public key do not match.

SGX_ERROR_OUT_OF_MEMORY
Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The signature generation process failed due to an internal cryptography lib-
rary failure.

Description

This function computes a digital signature over the input dataset based on the
RSA 3072 private key and verifies the signature using the corresponding RSA
3072 public key if provided.

A message digest is a fixed size number derived from the original message
with an applied hash function over the binary code of the message. (SHA256
in this case)

312 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The signer's private key and the message digest are used to create a sig-
nature.

The scheme used for computing a digital signature is of the RSASSA-PKCS1-
v1_5 scheme.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_rsa3072_verify

sgx_rsa3072 verify verifies the input digital signature for the given data-
set based on the RSA 3072 public key.
Syntax
sgx_status t sgx rsa3072 verify(
const uint8 t *p data,
uint32 t data_size,
const sgx rsa3072 public _key t *p public,

const sgx rsa3072 signature t *p signature,
sgx _rsa result t *p result

) ;

Parameters

p_data [in]

A pointer to the signed dataset to be verified.
data_size [in]

The size of the dataset to have its signature verified.
p_public [in]

A pointer to the public key to be used in the calculation of the signature.

NOTE:
Value is LITTLE ENDIAN.

p_signature [in]

A pointer to the signature to be verified.

-313 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

NOTE:
Value is LITTLE ENDIAN.

p_result [out]

A pointer to the result of the verification check populated by this function.
Return value

SGX_SUCCESS

The digital signature verification was performed successfully. Check p_result
to get the verification result.

SGX_ERROR_INVALID_PARAMETER

The public key, data, result or signature pointer is NULL or the data size is O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

The verification process failed due to an internal cryptography library failure.
Description

This function verifies the signature for the given data set based on the input
RSA 3072 public key.

A digital signature over a message is a buffer of 384-bytes, which could be cre-
ated by function: sgx rsa3072 sign.The scheme used for computing a
digital signature is of the RSASSA-PKCS1-v1_5 scheme.

The typical result of the digital signature verification is one of the two values:
SGX_ RSA VALID - Digital signature is valid

SGX RSA INVALID SIGNATURE - Digital signature is not valid

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

-314 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_create_rsa_key_pair

sgx_create rsa key pair generates public and private key pairs for the
RSA cryptographic algorithm with input key size and extracts each part of the
key pair to the prepared buffers.

Syntax
sgx_status t sgx create rsa key pair (
int n_byte size,
int e byte size,
unsigned char *p n,
unsigned char *p d,
unsigned char *p e,
unsigned char *p p,
unsigned char *p g,
unsigned char *p dmpl,
unsigned char *p dmgl,
unsigned char *p igmp);
Parameters
n_byte_size [in]
Size in bytes of the RSA key modulus.
e_byte_size [in]
Size in bytes of the RSA public exponent.
p_n [out]
Pointer to the generated RSA modulus.
p_d [out]
Pointer to the generated RSA private exponent.
p_e [in, out]
Pointer to the generated RSA private exponent.
p_p [out]

Pointer to the RSA key factor p.
p_q [out]

Pointer to the RSA key factor q.
p_dmp1 [out]

Pointer to the RSA key factor dmp1.
p_dmq1 [out]

-315 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Pointer to the RSA key factor dmg1l.

p_iqmp [out]

Pointer to the RSA key factor i gmp.

Return value

SGX_SUCCESS

RSA key pair is successfully generated.
SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.
SGX_ERROR_UNEXPECTED

Unexpected error occurred during the RSA key pair generation.
Description

This function generates public and private key pairs for the RSA cryptographic
algorithm and extracts each part of the key pair to the prepared buffers. If the
RSA public exponent is specified, this function utilizes the speicified RSA pub-
lic exponent to the generated RSA key pair.

Before calling the function, you need to allocate memory for all the RSA key
components (n, d, e, p, g, dmp1, dmgl, igmp).

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_create_rsa_priv1_key

sgx_create rsa privl key generates a private key for the RSA cryp-
tographic algorithm with the input RSA key components (n. e, d).

Syntax
sgx_status t sgx create rsa privl key (
int n _byte size,

int e byte size,
int d byte size,

-316 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

const unsigned char *le n,
const unsigned char *le e,
const unsigned char *le d,
void **new pri keyl

) ;

Parameters

n_byte_size [in]

Size in bytes of the RSA key modulus.

e_byte_size [in]

Size in bytes of the RSA public exponent.

d_byte_size [in]

Size in bytes of the RSA private exponent.

le_n [in]

Pointer to the RSA key modulus buffer.

le_e [in]

Pointer to the RSA public exponent buffer. e.

le_d [in]

Pointer to the RSA private exponent buffer d.
new_pri_key1 [out]

Pointer to the generated RSA private key.

Return value

SGX_SUCCESS

RSA private key is successfully generated.
SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.
SGX_ERROR_UNEXPECTED

Unexpected error occurred during the RSA private key generation.

Description

-317 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

This function generates a private key for the RSA cryptographic algorithm with
the input RSA key components (n. e, d).

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_create_rsa_priv2_key

sgx_create rsa priv2 key generates a private key for the RSA cryp-
tographic algorithm with the input RSA key components.
Syntax
sgx_status t sgx create rsa priv2 key(

int mod_size,

int exp_ size,

const unsigned char *p rsa key e,

const unsigned char *p rsa key p,

const unsigned char *p rsa key g,

const unsigned char *p rsa key dmpl,

const unsigned char *p rsa key dmqgl,

const unsigned char *p rsa key igmp,
void **new pri key?2

) ;

Parameters

mod_size [in]

Size in bytes of the RSA key modulus.
exp_size [in]

Size in bytes of the RSA public exponent.
p_rsa_key e [in]

Pointer to the RSA public exponent buffer.
p_rsa_key_p [in]

Pointer to the prime number p.
p_rsa_key _q [in]

Pointer to the prime number g.

p_rsa_key _dmp1 [in]

-318 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Pointer to the RSA factor dmpl. dmpl=g mod (p-1)
p_rsa_key_dmq1 [in]

Pointer to the RSA factor dmgl. dmgl=p mod (g-1)
p_rsa_key_igmp [in]

Pointer to the RSA factor igmp. igmp=g”~-1 mod p
new_pri_key2 [out]

Pointer to the generated RSA private key.

Return value

SGX_SUCCESS

RSA private key is successfully generated.
SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.
SGX_ERROR_UNEXPECTED

Unexpected error occurred during the RSA private key generation.
Description

This function generates a private key for the RSA cryptographic algorithm with
the input RSA key components (p, g, dmp1, dmgl, igmp).

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_create_rsa_pub1_key

sgx_create rsa publ key generatesa public key for the RSA cryp-
tographic algorithm with the input RSA key components.

Syntax
sgx status t sgx create rsa publ key(

int mod_size,

-319 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

int exp_ size,

const unsigned char *le n,
const unsigned char *le e,
void **new pub keyl

) ;

Parameters

mod_size [in]

Size in bytes of the RSA key modulus.

exp_size [in]

Size in bytes of the RSA public exponent.

le_n [in]

Pointer to the RSA modulus buffer.

le_e [in]

Pointer to the RSA public exponent buffer.
new_pub_key1 [out]

Pointer to the generated RSA public key.

Return value

SGX_SUCCESS

RSA public key is successfully generated.
SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.
SGX_ERROR_UNEXPECTED

Unexpected error occurred during the RSA public key generation.
Description

This function generates a public key for the RSA cryptographic algorithm with
the input RSA key components (n, e).

Requirements

-320 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_free_rsa_key
sgx_ free rsa keycleans up and deallocates the input RSA key.
Syntax
sgx _status t sgx free rsa key(
void *p_rsa_key,
sgx_rsa key type t key type,

int mod_size,
int exp_ size

) ;

Parameters

p_rsa_key [in]

Pointer to the RSA key.

key_type [in]

RSA key type..

mod_size[in]

Size in bytes for the RSA key modules.
exp_size[in]

Size in bytes of the RSA public exponent.
Return value

SGX_SUCCESS

RSA key is successfully cleaned up.
Description

This function clears the RSA key generated by one of the following APIs:
sgx_create_rsa_privl_key
sgx_create_rsa_priv2_key
sgx_create_rsa_pub1_key

You can use this function to deallocate the memory used for storing the RSA
key.

-321 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_rsa_pub_encrypt_sha256

sgx_rsa pub encrypt sha256 performsthe RSA-OAEP encryption oper-
ation with the SHA-256 algorithm.
Syntax
sgx_status_ t sgx rsa pub encrypt sha256 (
const void* rsa_ key,
unsigned char* pout data,
size t* pout len,

const unsigned char* pin data,
const size t pin len

)i

Parameters

rsa_key [in]

Pointer to the RSA public key.
pout_data [out]

Pointer to the output cipher text buffer.
pout_len [out]

Length of the output cipher text buffer.
pin_data [in]

Pointer to the input data buffer.
pin_len [in]

Length of the input data buffer.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input data size is O.

-322 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.
SGX_ERROR_UNEXPECTED

Unexpected error occurred during the encryption operation.
Description

This function carries out the RSA-OAEP encryption scheme with the SHA256
algorithm to encrypt the input data stream of a variable length.

You should allocate the source, destination, and counter data buffers within
the enclave.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_rsa_priv_decrypt_sha256

sgx_rsa priv decrypt sha256 performsthe RSA-OAEP decryption
operation with the SHA-256 algorithm.
Syntax
sgx_status t sgx rsa priv _decrypt sha256 (
const void* rsa_ key,
unsigned char* pout data,
size t* pout len,

const unsigned char* pin data,
const size t pin len

) ;

Parameters

rsa_key [in]

Pointer to the RSA private key.

pout_data [out]

Pointer to the output decrypted data buffer.
pout_len [out]

Length of the output decrypted data buffer.

-323 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

pin_data [in]

Pointer to the input data buffer to be decrypted.

pin_len [in]

Length of the input data buffer to be decrypted.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input data size is O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.
SGX_ERROR_UNEXPECTED

Unexpected error occurred during the encryption operation.
Description

This function carries out the RSA-OAEP decryption scheme with the SHA256
algorithm to decrypt the input data stream of a variable length.

You should allocate the source, destination, and counter data buffers within
the enclave.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_calculate_ecdsa_priv_key

sgx_calculate ecdsa priv key generates an ECDSA private key based
on an input random seed.

Syntax
sgx status t sgx calculate ecdsa priv key(
const unsigned char* hash drg,

int hash drg len,
const unsigned char* sgx nistp256 r ml,

-324-

Intel® Software Guard Extensions Developer Reference for Windows* OS

int sgx nistp256 r ml len,
unsigned char* out key,
int out key len

) ;

Parameters

hash_drg [in]

Pointer to the input random seed.

hash_drg_len [in]

Length of the input random seed.

sgx_nistp256_r_m1 [in]

Pointer to the buffer for n-1 where nis order of the ECC group used.
sgx_nistp256_r_m1_len [in]

Length for the buffer for nistp256.

out_key [out]

Pointer to the generated ECDSA private key.

out_key _len [in]

Length of the prepared buffer for ECDSA private key.

Return value

SGX_SUCCESS

ECDSA private key is successfully generated.
SGX_ERROR_INVALID_PARAMETER

Some of the pointers are NULL, or the input size is less than O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory available to complete this operation.
SGX_ERROR_UNEXPECTED

Unexpected error occurred during the ECDSA private key generation.
Description

This function generates an ECDSA private key based on an input random seed.

Requirements

-325-

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_create_pse_session

sgx_create pse session creates asession with the PSE.
Syntax
sgx status t sgx create pse session(

void

) ;

Return value

SGX_SUCCESS

Session is created successfully.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UPDATE_NEEDED
Intel® SGX needs to be updated.
SGX_ERROR_KDF_MISMATCH

Indicates the key derivation function does not match.

-326 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNRECOGNIZED_PLATFORM

Intel® EPID Provisioning failed because the platform was not recognized by
the back-end server.

SGX_ERROR_UNEXPECTED
Indicates an unexpected error occurred.
Description

An Intel® SGX enclave first calls sgx create pse session ()inthe pro-
cess to request platform service.

It's suggested that the caller should wait (typically several seconds to tens of
seconds) and retry this APl if SGX_ERROR_BUSY is returned.

Requirements

Header sgx_tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_close_pse_session

sgx_close pse session closesasession created by sgx create pse
session.

Syntax
sgx status t sgx close pse session(

void

) ;

Return value

SGX_SUCCESS

Session is closed successfully.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_UNEXPECTED

-327 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Indicates an unexpected error occurs.
Description

An Intel® SGX enclave calls sgx close pse session () whenthereisno
need to request platform service.

Requirements

Header sgx_tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_get_ps_sec_prop
sgx_get ps sec prop getsadata structure describing the security prop-
erty of the platform service.

Syntax
sgx_status t sgx get ps sec prop (

sgx_ps_sec_prop_desc_ t* security property

)

Parameters
security_property [out]

A pointer to the buffer that receives the security property descriptor of the
platform service. The pointer cannot be NULL.

Return value

SGX_SUCCESS

Security property is returned successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.
Description

Gets a data structure that describes the security property of the platform ser-
vice.

-328 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The caller should call sgx create pse session to establish a session
with the platform service enclave before calling this API.

Requirements

Header sgx tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_get_ps_sec_prop_ex

sgx_get ps sec prop ex getsa data structure describing the security
property of the platform service with extended platform service information.

Syntax
sgx status t sgx get ps sec prop ex (

sgx_ps_sec_prop_desc_ex t* security property

) ;

Parameters
security_property [out]

A pointer to the buffer that receives the security property descriptor of the
platform service and platform service information. The pointer cannot be
NULL.

Return value

SGX_SUCCESS

Security property is returned successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.
Description

Gets a data structure that describes the security property of the platform ser-
vice.

-329 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The caller should call sgx create pse session to establish a session
with the platform service enclave before calling this API.

Requirements

Header sgx tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_get_trusted_time

sgx_get trusted time getstrusted time from the AE service.
Syntax

sgx status t sgx get trusted time (

sgx_time t* current time,
sgx_time source nonce t* time source nonce

) ;

Parameters
current_time [out]

Trusted Time Stamp in seconds relative to a reference point. The reference
point does not change as long as the time source nonce has not changed.
The pointer cannot be NULL.

time_source_nonce [out]

A pointer to the buffer that receives the nonce which indicates time source.
The pointer cannot be NULL.

Return value

SGX_SUCCESS

Trusted time is obtained successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.

SGX_ERROR_SERVICE_UNAVAILABLE

-330 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The AE service did not respond or the requested service is not supported.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED
Indicates an unexpected error occurs.
Description

current time containstime insecondsand time source nonce con-
tains nonce associate with the time. The caller should compare time
source_ nonce against the value returned from the previous call of this API if
it needs to calculate the time passed between two readings of the Trusted
Timer. If the time source nonce of the two readings do not match, the dif-
ference between the two readings does not necessarily reflect time passed.

The caller should call sgx create pse session to establish a session
with the platform service enclave before calling this API.

Requirements

Header sgx tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_create_monotonic_counter_ex

sgx_create monotonic counter ex createsa monotonic counter.
Syntax
sgx status t sgx create monotonic counter ex(

uintl6 t owner policy,
const sgx_attributes t * owner attribute mask,

-331 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_mc_uuid t * counter uuid,
uint32 t * counter value

) ;

Parameters
owner_policy [in]

The owner policy of the monotonic counter.

« Ox1 means enclaves with same signing key can access the monotonic
counter

« 0x2 means enclave with same measurement can access the monotonic
counter

« Ox3 means enclave with same measurement as well as signing key can
access the monotonic counter.

o Owner policy values of Ox0 or any bits set beyond bits O and 1 will cause
SGX ERROR INVALID PARAMETER

owner_attribute_mask [in]
Mask of owner attribute, in the format of sgx _attributes t.
counter_uuid [out]

A pointer to the buffer that receives the monotonic counter ID. The pointer
cannot be NULL.

counter_value [out]

A pointer to the buffer that receives the monotonic counter value. The pointer
cannot be NULL.

Return value

SGX_SUCCESS

Monotonic counter is created successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the parameters is invalid.
SGX_ERROR_BUSY

The requested service is temporarily not available.

SGX_ERROR_MC_OVER_QUOTA

-332 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The enclave has reached the quota of Monotonic Counters it can maintain.
SGX_ERROR_MC_USED_UP

Monotonic counters are used out.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by the architectural enclave service.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED
Indicates an unexpected error occurs.
Description

Call sgx create monotonic counter ex tocreate a monotonic counter
with the given owner policyand owner attribute mask.

The caller should call sgx _create pse session to establish a session
with the platform service enclave before calling this API.

Creating a monotonic counter (MC) involves writing to the non-volatile

memory available in the platform. Repeated write operations could cause the
memory to wear out during the normal lifecycle of the platform. Intel® SGX pre-
vents this by limiting the rate at which MC operations can be performed. If you
exceed the limit, the MC operation may return SGX ERROR_BUSY for several
minutes.

Intel® SGX limits the number of monotonic counters (MC) an enclave can cre-
ate. To avoid exhausting the available quota, an Intel SGX application should

-333 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

record the MC UUID that sgx create monotonic counter ex returns
and destroy a MC when it is not needed any more. If an enclave reaches its
quota and previously created MC UUIDs have not been recorded, you may
restore the MC service after uninstalling the Intel® SGX PSW and installing it
again. This procedure deletes all MCs created by any enclave in that system.

NOTE
One application is not able to access the monotonic counter created by
another application in simulation mode. This also affects two different applic-
ations using the same enclave.

Requirements

Header sgx_tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_create_monotonic_counter

sgx_create monotonic counter createsamonotonic counter with
default owner policy and default user attribute mask.

Syntax
sgx status t sgx create monotonic counter (

sgx_mc_uuid t * counter uuid,
uint32 t * counter value

) ;

Parameters
counter_uuid [out]

A pointer to the buffer that receives the monotonic counter ID. The pointer
cannot be NULL.

counter_value [out]

A pointer to the buffer that receives the monotonic counter value. The pointer
cannot be NULL.

Return value
SGX_SUCCESS

Monotonic counter is created successfully.

-334-

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_MC_OVER_QUOTA

The enclave has reached the quota of Monotonic Counters it can maintain.
SGX_ERROR_MC_USED_UP

Monotonic counters are used out.

SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED
Indicates an unexpected error occurs.
Description

Call sgx _create monotonic counter to create a monotonic counter
with the default owner policy 0x1, which means enclaves with same signing
key can access the monotonic counter and default owner attribute mask
OxFFFFFFFFFFFFFFCB.

-335-

Intel® Software Guard Extensions Developer Reference for Windows* OS

The caller should call sgx create pse session to establish a session
with the platform service enclave before calling this API.

Creating a monotonic counter (MC) involves writing to the non-volatile

memory available in the platform. Repeated write operations could cause the
memory to wear out during the normal lifecycle of the platform. Intel® SGX pre-
vents this by limiting the rate at which MC operations can be performed. If you
exceed the limit, the MC operation may return SGX_ERROR_BUSY for several
minutes.

Intel® SGX limits the number of MCs an enclave can create. To avoid exhaust-
ing the available quota, an Intel SGX application should record the MC UUID
that sgx_create monotonic counter returns and destroy a MC when it
is not needed any more. If an enclave reaches its quota and previously created
MC UUIDs have not been recorded, you may restore the MC service after unin-
stalling the Intel® SGX PSW and installing it again. This procedure deletes all
MCs created by any enclave in that system.

NOTE

One application is not able to access the monotonic counter created by
another application in simulation mode. This also affects two different applic-
ations using the same enclave.

Requirements

Header sgx tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_destroy_monotonic_counter

sgx_destroy monotonic counter destroysamonotonic counter cre-
Medbysgx_create_monotonic_counterOrsgx_create_mono—
tonic counter ex.

Syntax

sgx _status t sgx destroy monotonic counter (

const sgx _mc_uuid t * counter uuid

) ;

Parameters

counter_uuid [in]

-336 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The monotonic counter ID to be destroyed.

Return value

SGX_SUCCESS

Monotonic counter is destroyed successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_MC_NOT_FOUND

The Monotonic Counter does not exist or has been invalidated.
SGX_ERROR_MC_NO_ACCESS_RIGHT

The enclave does not have the access right to specified Monotonic Counter.
SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED
Indicates an unexpected error occurs.

Description

-337 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Calling sgx_destroy monotonic counter after a monotonic counter is
not needed anymore.

The caller should call sgx create pse session to establish a session
with the platform service enclave before calling this API.

sgx_destroy monotonic counter failsif the calling enclave does not
match the owner policy and the attributes specified in the call that created
the monotonic counter.

Destroying a Monotonic Counter (MC) involves writing to the non-volatile
memory available in the platform. Repeated write operations could cause the
memory to wear out during the normal lifecycle of the platform. Intel® SGX pre-
vents this by limiting the rate at which MC operations can be performed. If you
exceed the limit, the MC operation may return SGX ERROR_BUSY for several
minutes.

Requirements

Header sgx tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_increment_monotonic_counter

sgx_increment monotonic counter incrementsa monotonic counter
value by 1.

Syntax
sgx_status t sgx increment monotonic counter (

const sgx mc _uuid t * counter uuid,
uint32 t * counter value

) ;

Parameters

counter_uuid [in]

The Monotonic Counter ID to be incremented.
counter_value [out]

A pointer to the buffer that receives the Monotonic Counter value. The pointer
cannot be NULL.

Return value

-338 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_SUCCESS

Monotonic Counter is incremented successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_BUSY

The requested service is temporarily not available.
SGX_ERROR_MC_NOT_FOUND

The Monotonic Counter does not exist or has been invalidated.
SGX_ERROR_MC_NO_ACCESS_RIGHT

The enclave does not have the access right to specified Monotonic Counter.
SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by architectural enclave service.
SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF_EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED
Indicates an unexpected error occurs.
Description

Call sgx _increment monotonic counter toincrease a monotonic
counter value by 1.

-339 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The caller should call sgx create pse session to establish a session
with the platform service enclave before calling this API.

sgx_increment monotonic counter fails if the calling enclave does not
match the owner policy and the attributes specified in the call that created
the monotonic counter.

Incrementing a monotonic counter (MC) involves writing to the non-volatile
memory available in the platform. Repeated write operations could cause the
memory to wear out during the normal lifecycle of the platform. Intel® SGX pre-
vents this by limiting the rate at which MC operations can be performed. If you
exceed the limit, the MC operation may return SGX ERROR_BUSY for several
minutes.

Requirements

Header sgx_tae service.h sgx tae service.edl
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_read_monotonic_counter

sgx_read monotonic counter returns the value of a monotonic counter.
Syntax
sgx_status t sgx increment monotonic counter (

const sgx _mc_uuid t * counter uuid,
uint32 t * counter value

)

Parameters

counter_uuid [in]

The monotonic counter ID to be read.
counter_value [out]

A pointer to the buffer that receives the monotonic counter value. The pointer
cannot be NULL.

Return value
SGX_SUCCESS

Monotonic counter is read successfully.

-340 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_INVALID_PARAMETER

Any of the pointers is invalid.

SGX_ERROR_MC_NOT_FOUND

the Monotonic Counter does not exist or has been invalidated.
SGX_ERROR_AE_SESSION_INVALID

Session is not created or has been closed by the user or the Architectural
Enclave service.

SGX_ERROR_SERVICE_UNAVAILABLE

The AE service did not respond or the requested service is not supported.
SGX_ERROR_SERVICE_TIMEOUT

A request to the AE service timed out.

SGX_ERROR_NETWORK_FAILURE

Network connecting or proxy setting issue was encountered.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_OUT_OF EPC

There is not enough EPC memory to load one of the Architecture Enclaves
needed to complete this operation.

SGX_ERROR_UNEXPECTED
Indicates an unexpected error occurred.
Description

Call sgx_read monotonic counter toread the value of a monotonic
counter.

The caller should call sgx create pse session to establish a session
with the platform service enclave before calling this API.

sgx_read monotonic counter failsif the calling enclave does not match
the owner policy and the attributes specified in the call that created the mono-
tonic counter.

Requirements

-341 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_tae service.h sgx tae service.edl

Library sgx_tservice.liborsgx tservice sim.1lib (sim-
ulation)

sgx_ra_init

The sgx_ra init function creates a context for the remote attestation and
key exchange process.

Syntax
sgx _status t sgx ra init(
const sgx_ec256 public t * p pub key,

int b_pse,
Sgx_ra context t * p context

)

Parameters
p_pub_key [in] (Little Endian)

The EC public key of the service provider based on the NIST P-256 elliptic
curve.

b_pse [in]

If true, platform service information is needed in message 3. The caller must
make sure a PSE session has been established using sgx create pse ses-
sion before attempting to establish a remote attestation and key exchange
session involving platform service information.

p_context [out]

The output context for the subsequent remote attestation and key exchange
process,to be used in sgx ra get msgl and sgx ra proc msg2.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.

SGX_ERROR_OUT_OF_MEMORY

342 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Not enough memory is available to complete this operation, or contexts reach
the limits.

SGX_ERROR_AE_SESSION_INVALID

The session is invalid or ended by the server.
SGX_ERROR_UNEXPECTED

Indicates that an unexpected error occurred.
Description

This is the first APl user should call for a key exchange process. The context
returned from this function is used as a handle for other APIs in the key
exchange library.

Requirements

Header sgx_tkey exchange.h sgx tkey exchange.edl

Library sgx_tkey exchange.lib

sgx_ra_init_ex

The sgx_ra init ex function creates a context for the remote attestation
and key exchange process while it allows the use of a custom defined Key
Derivation Function (KDF).

Syntax

sgx status t sgx ra init ex(
const sgx_ec256 public t * p pub key,
int b _pse,

sgx_ra_derive secret keys t derive key cb,
Sgx_ra _context t * p context

)

Parameters
p_pub_key [in] (Little Endian)

The EC public key of the service provider based on the NIST P-256 elliptic
curve.

b_pse [in]

If true, platform service information is needed in message 3. The caller must
make sure a PSE session has been established using sgx create pse

-343 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

session before attempting to establish a remote attestation and key
exchange session involving platform service information.

derive_key cb [in]

This a pointer to a call back routine matching the funtion prototype ofsgx
ra_derive secret keys t.Thisfunction takes the Diffie-Hellman shared
secret as input to allow the ISV enclave to generate their own derived shared
keys (SMK, SK, MK and VK).

p_context [out]

The output context for the subsequent remote attestation and key exchange
process,to be used in sgx_ra get msgl and sgx ra proc msgZ2.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation, or contexts reach
the limits.

SGX_ERROR_AE_SESSION_INVALID

The session is invalid or ended by the server.
SGX_ERROR_UNEXPECTED

Indicates that an unexpected error occurred.
Description

This is the first APl user should call for a key exchange process. The context
returned from this function is used as a handle for other APIs in the key
exchange library.

Requirements

Header sgx tkey exchange.h sgx tkey exchange.edl

Library sgx_tkey exchange.lib

-344 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_ra_get_keys

The sgx_ra get keys function is used to get the negotiated keys of a
remote attestation and key exchange session. This function should only be
called after the service provider accepts the remote attestation and key
exchange protocol message 3 produced by sgx ra proc msg2.

Syntax
sgx status t sgx ra get keys(
sSgx _ra context t context,

sgx_ra_key type t type,
sgx_ra_key 128 t *p key

)

Parameters

context [in]

Context returned by sgx_ra init.

type [in]

The type of the keys, which can be SGX RA KEY MKor SGX RA KEY SK.

If the RA context was generated by sgx_ra init,the returned SGX RA
KEY MK or SGX RA KEY SKisderived from the Diffie-Hellman shared secret
elliptic curve field element between the service provider and the application
enclave using the following Key Derivation Function (KDF):

KDK = AES-CMAC (key0, gab x-coordinate)

SGX RA KEY MK = AES-CMAC (KDK,
0x01||’MK’|]|0x00]||0x80]|0x00)

SGX RA KEY SK = AES-CMAC (KDK,
0x01|]"SK"|]0x00]]0x80]|]0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the Key derivation calculation is the Diffie-Hellman shared secret
elliptic curve field element in Little Endian format. The plain text used in each
key calculation includes:

-345 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

e acounter (0x01)

« alabel: the ASCIl representation of one of the strings 'MK' or 'SK" in Little
Endian format

» abit length (0x80)

If the RA context was generated by the sgx ra init ex API, the KDF used
to generate SGX RA KEY MK and SGX RA KEY SKisdefined inthe imple-
mentation of the call back function provided to the sgx ra init ex func-
tion.

p_key [out]

The key returned.

Return value

SGX_SUCCESS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.
SGX_ERROR_INVALID_STATE

Indicates this API is invoked in incorrect order, it can be called only after a suc-
cess session has been established. In other words, sgx _ra proc msg2
should have been called and no error returned.

Description

After a successful key exchange process, this APl can be used in the enclave to
get specific key associated with this remote attestation and key exchange ses-
sion.

Requirements

Header sgx tkey exchange.h sgx tkey exchange.edl

Library sgx_tkey exchange.lib

sgx_ra_close

Callthe sgx_ra close function to release the remote attestation and key
exchange context after the process is done and the context isn't needed any-
more.

Syntax

-346 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx status t sgx ra close(

sgx_ra context t context

) ;

Parameters

context [in]

Context returned by sgx _ra init.
Return value

SGX_SUCCESS

Indicates success.
SGX_ERROR_INVALID_PARAMETER
Indicates the context is invalid.
Description

At the end of a key exchange process, the caller needs to use this APl in an
enclave to clear and free memory associated with this remote attestation ses-
sion.

Requirements

Header sgx_tkey exchange.h sgx key exchange.edl

Library sgx_tkey exchange.lib

sgx_dh_init_session

Initialize DH secure session according to the caller’s role in the establishment.
Syntax

sgx status t sgx dh init session(

sgx_dh session role t role,
sgx_dh session t * session

) ;
Parameters

role [in]

Indicates which role the caller plays in the secure session establishment.

-347 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The value of role of the initiator of the session establishment must be SGX
DH SESSION INITIATOR.

The value of role of the responder of the session establishment must be SGX
DH SESSION RESPONDER.

session [out]

A pointer to the instance of the DH session which contains entire information
about session establishment.

NOTE

The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

Return value

SGX_SUCCESS

Session is initialized successfully.
SGX_ERROR_INVALID_PARAMETER
Any of the input parameters is incorrect.

Requirements

Header sgx_dh.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_dh_responder_gen_msg1

Generates MSG1 for the responder of DH secure session establishment and
records ECC key pair in session structure.

Syntax
sgx _status t sgx dh responder gen msgl (

sgx_dh msgl t * msgl,
sgx_dh session t * dh session

) ;

Parameters

msg1 [out]

-348 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Apointertoan sgx_dh msgl t msg1 buffer. The buffer holding the msg1

message, which is referenced by this parameter, must be within the enclave.

The DH msg1 contains the responder’s public key and report based target

info.

dh_session [in/out]

A pointer that points to the instance of sgx _dh session t.The buffer hold-

ing the DH session information, which is referenced by this parameter, must

be within the enclave.

NOTE

As output, the DH session structure contains the responder’s public key and

private key for the current session.

Return value

SGX_SUCCESS

MSGT1 is generated successfully.
SGX_ERROR_INVALID_PARAMETER
Any of the input parameters is incorrect.

SGX_ERROR_INVALID_STATE

The APl is invoked in incorrect order or state.

SGX_ERROR_OUT_OF_MEMORY
The enclave is out of memory.
SGX_ERROR_UNEXPECTED

An unexpected error occurred.

Requirements

Header sgx_dh.h

ulation)

Library sgx_tservice.liborsgx tservice sim.lib (sim-

sgx_dh_initiator_proc_msg1

The initiator of the DH secure session establishment handles msg1 sent by a
responder, generates msg2, and records the ECC key pair of the initiator in the

DH session structure.

-349 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

NOTE
To use DH key exchange 2.0 APIs, define SGX_USE_LAv2_INITIATOR.

Syntax
sgx_status t sgx dh initiator proc msgl (
const sgx dh msgl t * msgl,

sgx_dh msg2 t * msg2,
sgx_dh session t * dh session

) ;

Parameters
msg1 [in]

Pointer to the dh message 1 buffer generated by a session responder. The buf-
fer must be in enclave address space.

NOTE

The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

msg2 [out]

Pointer to thedh message 2 buffer. The buffer must be in enclave address
space.

NOTE

The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

dh_session [in/out]

Pointer to the dh session structure used during establishment. The buffer
must be in enclave address space.

NOTE

The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

Return value
SGX_SUCCESS
msg1 is processed and msg2 is generated successfully.

SGX_ERROR_INVALID_PARAMETER

-350 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Any of the input parameters is incorrect.
SGX_ERROR_INVALID_STATE

The APl is invoked in an incorrect order or state.

SGX_ERROR_OUT_OF_MEMORY

Enclave is out of memory.

SGX_ERROR_UNEXPECTED

Unexpected error occurred.

Requirements

Header sgx_dh.h
Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_dh_responder_proc_msg2

Handles msg2 sent by an initiator,derives AEK, updates the session inform-

ation, and generates msg3.

NOTE

To use DH key exchange 2.0 APIs, define SGX_USE_LAv2_INITIATOR.

Syntax

sgx status t sgx dh responder proc msg2 (

const sgx_dh msg2 t * msg2,

sgx_dh msg3 t * msg3,

sgx_dh session t * dh session,

sgx_key 128bit t * aek,

sgx_dh session enclave identity t * initiator identity

) ;

Parameters

msg2 [in]

Pointer to the dh message 2 buffer generated by a session initiator. The buffer
must be in enclave address space.

NOTE

-351 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

msg3 [out]

Pointer to the dh message 3 buffer generated by a session responder in this
function. The buffer must be in enclave address space.

NOTE

The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

dh_session [in/out]

Pointer to the dh session structure used during establishment. The buffer
must be in enclave address space.

NOTE

The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

aek [out]

Pointer to instance of sgx_key 128bit t.The aekis derived as follows:
KDK := CMAC (key0, LittleEndian(gab x-coordinate))

AEK = AES-CMAC (KDK, O0xO1||"AEK’||0x00]|10x801]]0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the AEK calculation includes:

e acounter (0x01)

« alabel: the ASCIl representation of the string 'AEK' in Little Endian
format)

» abit length (0x80)

NOTE

The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

initiator_identity [out]

-352 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Pointer to instance of sgx dh session enclave identity t.ldentity
information of initiator includes isv svn, isv product id, the enclave attributes,
MRSIGNER, and MRENCLAVE. The buffer must be located in the enclave
address space. Check the identity of the peer and decide whether to trust the
peer and use the aek.

NOTE

The pointer value must be a valid address within an enclave, as well as the end
address of the session structure.

Return value

SGX_SUCCESS

msg2 is processed and msg3 is generated successfully.
SGX_ERROR_INVALID_PARAMETER

Any of the input parameters is incorrect.
SGX_ERROR_INVALID_STATE

The APl is invoked in an incorrect order or state.
SGX_ERROR_KDF_MISMATCH

Key derivation function does not match.
SGX_ERROR_OUT_OF_MEMORY

Enclave is out of memory.
SGX_ERROR_UNEXPECTED

Unexpected error occurred.

Requirements

Header sgx_dh.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_dh_initiator_proc_msg3

The initiator handles msg3 sent by responder and then derives AEK, updates
session information and gets responder’s identity information.

Syntax

sgx_status t sgx dh initiator proc msg3 (

-353 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

const sgx_dh msg3 t * msg3,

sgx_dh session t * dh session,

sgx_key 128bit t * aek,

sgx_dh session enclave identity t * responder identity

) ;

Parameters
msg3 [in]

Point to dh message 3 buffer generated by session responder, and the buffer
must be in enclave address space.

NOTE

The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

dh_session [in]

Point to dh session structure that is used during establishment, and the buffer
must be in enclave address space.

NOTE
The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

aek [out]

A pointer that points to instance of sgx_key 128bit t.The aekis derived
as follows:

KDK:= CMAC (key0, LittleEndian (gab x-coordinate))
AEK = AES-CMAC (KDK, OxOl||"AEK’ ||0x00]]10x80]]10x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the AEK calculation includes:

e acounter (0x01)
« alabel: the ASCIl representation of the string 'AEK'" in Little Endian format
« abit length (0x80)

NOTE

-354 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

responder_identity [out]

Identity information of responder including isv svn, isv product id, the enclave
attributes, MRSIGNER, and MRENCLAVE. The buffer must be in enclave
address space. The caller should check the identity of the peer and decide
whether to trust the peer and use the aek or the msg3 body.additional
prop field of msg3.

NOTE

The value of the pointer must be a valid address within an enclave, as well as
the end address of the session structure.

Return value

SGX_SUCCESS

The function is done successfully.
SGX_ERROR_INVALID_PARAMETER
Any of the input parameters is incorrect.
SGX_ERROR_INVALID_STATE

The APl is invoked in incorrect order or state.
SGX_ERROR_OUT_OF_MEMORY

The enclave is out of memory.
SGX_ERROR_UNEXPECTED

An unexpected error occurred.

Requirements

Header sgx_dh.h

Library sgx_tservice.liborsgx tservice sim.lib (sim-
ulation)

sgx_fopen

The sgx_fopen function creates or opens a protected file.
Syntax

SGX FILE* sgx fopen/(

-355 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

const char* filename,
const char* mode,
const sgx key 128bit t *key

) ;

Parameters

filename [in]

The name of the file to be created or opened.
mode [in]

The file open mode string. Allowed values are any combination of 'r’, ‘w’ or ‘@,
with possible ‘+' and possible ‘b’ (since string functions are currently not sup-
ported, ‘b’ is meaningless).

key [in]

The encryption key of the file. This key is used as a key derivation key, used for
deriving encryption keys for the file. If the file is created with sgx fopen, you
should protect this key and provide it as input every time the file is opened.

Return value

If the function succeeds, it returns a valid file pointer, which can be used by all
the other functions in the Protected FS API, otherwise, NULL is returned and
errno is set with an appropriate error code. See Protected FS Error Codes
for more details about errors.

Description

sgx_fopen is similar to the C file APl fopen. It creates a new Protected File
or opens an existing Protected File created with a previous call to sgx
fopen. Regular files cannot be opened with this API.

For more details about this APl and its parameters, check the fopen doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_fopen_auto_key
The sgx fopen auto key function creates or opens a protected file.

Syntax

-356 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX FILE* sgx fopen auto key(

const char* filename,
const char* mode

) ;

Parameters

filename [in]

The name of the file to be created or opened.
mode [in]

The file open mode string. Allowed values are any combination of 'r’, ‘w’ or ‘@,
with possible ‘+' and possible ‘b’ (since string functions are currently not sup-
ported, ‘b’ is meaningless).

Return value

If the function succeeds, it returns a valid file pointer, which can be used by all
the other functions in the Protected FS API, otherwise, NULL is returned and
errno is set with an appropriate error code. See Protected FS Error Codes
for more details about errors.

Description

sgx_fopen auto_key issimilar to the Cfile APl fopen. It creates a new Pro-
tected File or opens an existing Protected File created with a previous call to
sgx_fopen auto key.Regular files cannot be opened with this API.

For more details about this APl and its parameters, check the fopen doc-
umentation.

Requirements

Header sgx_tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_fclose

The sgx_fclose function closes a protected file handle.
Syntax
int32 t sgx fclose(

SGX FILE* stream

) ;

Parameters

-357 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

stream [in]

A file handle that is returned from a previous call to sgx fopen or sgx
fopen auto key.

Return value

0

The file was closed successfully.

1

There were errors during the operation.
Description

sgx_fclose issimilar to the Cfile APl fclose. It closes an open Protected
File handle created with a previous call to sgx_fopen or sgx_fopen
auto key. After a call to this function, the handle is invalid even if an error is
returned.

For more details about this APl and its parameters, check the fclose doc-
umentation.

Requirements

Header sgx _tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_fread

The sgx_fread function reads the requested amount of data from the file,
and extends the file pointer by that amount.

Syntax

size t sgx_ fread(
void* ptr,
size t size,

size t count,
SGX FILE* stream

) ;
Parameters
ptr[out]

A pointer to a buffer of at least size*count bytes, to receive the data read
from the file.

-358 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

size [in]

The size of each block to be read.
count [in]

The number of blocks to be read.
stream [in]

A file handle that is returned from a previous call to sgx fopen or sgx
fopen auto key.

Return value
The number of blocks of size size that were read from the file.
Description

sgx_fread issimilar to the Cfile APl fread. In case of an error, sgx_fer-
ror can be called to get the error code.

For more details about this APl and its parameters, check the fread doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_fwrite

The sgx_fwrite function writes the given amount of data to the file, and
extends the file pointer by that amount.

Syntax

size t sgx fwrite(
const void* ptr,
size t size,

size_ t count,
SGX FILE* stream

)
Parameters
ptr [in]

A pointer to a buffer of at least size*count bytes, that contains the data to
write to the file

-359 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

size [in]

The size of each block to be written.
count [in]

The number of blocks to be written.
stream [in]

A file handle that is returned from a previous call to sgx fopen or sgx
fopen auto key.

Return value
The number of blocks of size size that were written to the file.
Description

sgx_fwrite issimilar to the Cfile APl fwrite.In case of anerror,sgx fer-
ror can be called to get the error code.

For more details about this APl and its parameters, check the fwrite doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_fflush

The sgx_fflush function forces a cache flush, and if it returns successfully, it
is guaranteed that your changes are committed to a file on the disk.

Syntax
int32 t sgx fflush(

SGX FILE* stream

) ;
Parameters
stream [in]

Afile handle that is returned from a previous call to sgx fopen or sgx__
fopen auto key.

Return value
0

- 360 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The operation completed successfully.
1

There were errors during the operation. sgx ferror can be called to get the
error code.

Description

sgx_fflush issimilar to the Cfile APl ££1ush. This function flushes all the
modified data from the cache and writes it to a file on the disk. In case of an
error,sgx_ferror can be called to get the error code. Note that this func-
tion does not clear the cache, but only flushes the changes to the actual file on
the disk. Flushing also happens automatically when the cache is full and page
eviction is required.

For more details about this APl and its parameters, check the f f1ush doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_ftell

The sgx ftell function creates or opens a protected file.
Syntax

int64 t sgx ftell(

SGX FILE* stream

) ;
Parameters
stream [in]

A file handle that is returned from a previous call to sgx fopen or sgx
fopen auto key.

Return value

If the function succeeds, it returns the current value of the position indicator
of the file, otherwise, -1 is returned and errno is set with an appropriate error
code. See Protected FS Error Codes for more details about errors.

Description

sgx_ftell issimilar to the Cfile APl ftell.

-361 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

For more details about this APl and its parameters, check the ftel1 doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_fseek

The sgx_fseek function sets the current value of the position indicator of
the file.

Syntax

int6d4d t sgx fseek(
SGX FILE* stream,
int64 t offset,
int origin

) 7

Parameters

stream [in]

A file handle that was returned from a previous call to sgx _fopen or sgx
fopen auto key.

offset [in]
The new required value, relative to the origin parameter.
origin [in]

The origin from which to calculate the offset (SEEK_SET, SEEK_CUR or
SEEK_END).

Return value

0

The operation completed successfully.
-1

There were errors during the operation. sgx ferror can be called to get the
error code.

Description

sgx_fseek issimilar to the Cfile APl £seek.

-362 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

For more details about this APl and its parameters, check the fseek doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_feof

The sgx_feof function tells the caller if the file's position indicator hit the
end of the file in a previous read operation.

Syntax
int32 t sgx feof(

SGX FILE* stream

) ;
Parameters
stream [in]

A file handle that was returned from a previous call to sgx fopen or sgx
fopen auto key.

Return value

0

End of file was not reached.

1

End of file was reached.

Description

sgx_feof issimilar to the Cfile APl feof.

For more details about this APl and its parameters, check the feof doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

-363 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_ferror

The sgx ferror function returns the latest operation error code.
Syntax
int32 t sgx ferror(

SGX FILE* stream

) ;
Parameters
stream [in]

A file handle that is returned from a previous call to sgx fopen or sgx
fopen auto key.

Return value

The latest operation error code is returned. O indicates that no errors
occurred.

Description

sgx_ferror issimilar to the Cfile APl ferror. In case the latest operation
failed because the file is in a bad state, SGX ERROR FILE BAD STATUS will
be returned.

For more details about this APl and its parameters, check the ferror doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_clearerr

The sgx clearerr function attempts to repair a bad file status, and also
clears the end-of-file flag.

Syntax
void sgx clearerr (

SGX FILE* stream

) ;
Parameters

stream [in]

-364 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Afile handle that is returned from a previous call to sgx fopen or sgx
fopen auto key.

Return value
None
Description

sgx_clearerr issimilar to the C file APl clearerr. This function attempts
to repair errors resulted from the underlying file system, like write errors to
the disk (resulting in a full cache that cannot be emptied). Call sgx ferror
or sgx_feof after a call to this function to learn if it was successful or not.

sgx_clearerr does not repair errors resulting from a corrupted file, like
decryption errors, or from memory corruption, etc.

For more details about this APl and its parameters, check the clearerr doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_remove

The sgx_remove function deletes a file from the file system.
Syntax
int32 t sgx_ remove (

const char* filename,

)i

Parameters

filename [in]

The name of the file to delete.

Return value

0

The operation completed successfully.
1

An error occurred, check errno for the error code.

-365 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Description
sgx_remove is similar to the C file APl remove.

For more details about this APl and its parameters, check the remove doc-
umentation.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_ tprotected fs.lib

sgx_fexport_auto_key

The sgx fexport auto key function is used for exporting the latest key
used for the file encryption. See File Transfer with the Automatic Keys API for
more details.

Syntax
int32 t sgx fexport auto key(

const char* filename,
sgx_key 128bit t *key

) ;
Parameters
filename [in]

The name of the file to be exported. This should be the name of a file created
with the sgx fopen auto key APL

key [out]

The latest encryption key.

Return value

0

The operation completed successfully.

1

An error occurred, check errno for the error code.

Description

- 366 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_fexport auto key isused to export the last key that was used in the
encryption of the file. With this key you can import the file in a different
enclave or system.

NOTE:

1. In order for this function to work, the file should not be opened in any
other process.
2. This function only works with files created with sgx fopen auto key.

See File Transfer with the Automatic Keys API for more details.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_fimport_auto_key

The sgx fimport auto key functionis used for importing a Protected FS
auto key file created on a different enclave or platform. See File Transfer with
the Automatic Keys API for more details.

Syntax
int32 t sgx fimport auto key(

const char* filename,
const sgx_key 128bit t *key

)
Parameters
filename [in]

The name of the file to be imported. This should be the name of a file created
with the sgx_fopen_ auto_key API, on a different enclave or system.

key [in]

The encryption key, exported with a callto sgx fexport auto keyinthe
source enclave or system.

Return value
0]
The operation completed successfully.

1

-367 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

An error occurred, check errno for the error code.
Description

sgx_fimport auto key isused forimporting a Protected FS file. After this
call returns successfully, the file can be opened normally with sgx fexport
auto_ key.

NOTE:

1. In order for this function to work, the file should not be opened in any
other process.
2. This function only works with files created with sgx fopen auto key.

See File Transfer with the Automatic Keys API for more details.

Requirements

Header sgx_tprotected fs.h sgx tprotected fs.edl

Library sgx_tprotected fs.lib

sgx_fclear_cache

The sgx fclear cache functionis used for clearing the internal file cache.
The function scrubs all the data from the cache, and releases all the allocated
cache memory.

Syntax
int32 t sgx fclear cache(

SGX FILE* stream

) ;
Parameters
stream [in]

A file handle that is returned from a previous call to sgx fopen or sgx__
fopen auto key.

Return value

0

The operation completed successfully.
1

An error occurred, call sgx_ferror to get the error code.

-368 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Description

sgx_fclear cache isused to scrub all the data from the cache and release
all the allocated cache memory. If modified data is found in the cache, it will
be written to the file on disk before being scrubbed.

This function is especially useful if you do not trust parts of your own enclave
(for example, external libraries you linked against, etc.) and want to make sure
there is as little sensitive data in the memory as possible before transferring
control to the code they do not trust. Note, however, that the SGX FILE struc-
ture itself still holds sensitive data. To remove all such data related to the file
from memory completely, you should close the file handle.

Requirements

Header sgx tprotected fs.h sgx tprotected fs.edl

Library sgx_ tprotected fs.lib

sgx_virtual_protect

This function is used to change the access permissions for a committed page
in an Intel® SGX 2.0 enclave.
Syntax
int sgx virtual protect (
void* addr,
const size t size,
const uint32 t new prot,

const uint32 t* old prot,
sSgx_status_t * error

)
Parameters
addr [in]

Page aligned address in the enclave that specifies the start of the address
range on which to perform the operation.

size [in]

The size of the address range on which to perform the operation, in bytes, as a
multiple of page size.

new_prot [in]

Specifies the new page protections:

-369 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ PAGE_NOACCESS
SGX_ PAGE_READONLY
SGX PAGE_READWRITE

e SGX PAGE EXECUTE READ
o SGX PAGE EXECUTE READWRITE

old_prot [out]

Optional. If passed in, the old page protections for the first page in the
address range specified will be returned.

error [out]

Optional. If passed in, on failure, error will be set to provide more information.

INVALID PARAMETER

Return value Description

SGX_ ERROR This platform does not support Intel® SGX EDMM.
FEATURE NOT

SUPPORTED

SGX_ ERROR One of the parameters passed in is invalid. This may

be due to passing in a non page-aligned address, a
size that is not a multiple of the page size, or an
invalid permissions specifier.

SGX_ERROR
INVALID STATE

The pages in the address range are not in the cor-
rect state for the requested operation.

SGX_ ERROR_MEMORY
LOCKED

Special regions in the enclave are locked and unavail{
able for update by this function. Attempts to change
locked regions will result in this error.

SGX_ERROR
UNEXPECTED

General run time error.

Return value

0

Indicates failure.
nonzero
Indicates success

Description

Intel® SGX 2.0 platform support is required. If the platform does not support
Intel® SGX EDMM, sgx virtual protect willreturnOand seterror to

SGX_ERROR_FEATURE

NOT SUPPORTED.

-370 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Requirement

Header sgx_tedmm.h, sgx tedmm.edl

Library sgx_tedmm.lib

sgx_ecc256_calculate_pub_from_priv

Generates an ECC public key based on a given ECC private key.
Syntax

sgx_ecc256 calculate pub from priv(

const sgx_ec256 private t *p att priv key,
sgx_ec256_public t *p att pub key

)

Parameters

p_att_priv_key [in]

Pointer to the input ECC private key.
p_att_pub_key [out]

Pointer to output public key - LITTLE ENDIAN.
Return value

SGX_SUCCESS

All outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

One or more of input parameters is invalid.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

-371-

Intel® Software Guard Extensions Developer Reference for Windows* OS

This function retrieves an ECC public key from a given private key on curve
NID_X9_62_prime256v1. (pub = priv * curve_group).

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_ecdsa_verify_hash

Directly verifies the signature for the given data of size SGX_SHA256_HASH_
SIZE based on the public key.

Syntax
sgx_status t sgx ecdsa verify hash(

const uint8 t *p data,

uint32 t data_size,

const sgx _ec256 public t *p public,

const sgx ec256 signature t *p signature,
uint8 t *p result,

sgx_ecc_state handle t ecc_handle

) ;

Parameters

p_data [in]

Pointer to the signed dataset of size SGX_SHA256_HASH_SIZE to be verified.
p_public [in]

Pointer to the public key to be used for the signature calculation.

NOTE:
Value is LITTLE ENDIAN.

p_signature [in]

Pointer to the signature to be verified.

NOTE:
Value is LITTLE ENDIAN.

p_result [out]

-372 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Pointer to the result of the verification check populated by this function.
ecc_handle [in]

Handle of the allocated and initialized ECC GF(p) context state used to call
standard functions of the elliptic curve cryptosystem. The algorithm stores
intermediate results of calculations performed using this context.

NOTE:
The ECC set of APIs only supports a 256-bit GF(p) cryptography system.

Return value
SGX_SUCCESS

Digital signature verification is performed successfully. Check p_result to get
the verification result.

SGX_ERROR_INVALID_PARAMETER

The ECC context handle, public key, data, result, or signature pointer is NULL,
or the data size is O.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

Verification process failed due to an internal cryptography library eror.
Description

This function verifies the signature for the given data set based on the input
public key. The function performs verification without calculating the data
hash.

A digital signature of the message consists of a pair of large numbers, 256 bits
each, which could be created by sgx ecdsa sign.The ECDSA scheme, an
elliptic curve of the DSA scheme, is used for computing a digital signature.

The digital signature verification results in one of the following values:
SGX_EC_VALID - Digital signature is valid.
SGX EC INVALID SIGNATURE - Digital signature is not valid.

To create elliptic curve domain parameters, use the sgx ecc256 open
context function.

-373 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_hmac_sha256_msg

Computes a message authentication code of p_src using the hash function
SHA256 and p_key.

Syntax
sgx _status t sgx hmac sha256 msg(

const unsigned char *p_ src,
int src_len,

const unsigned char *p_ key,
int key len,

unsigned char *p mac,

int mac_ len

) ;

Parameters

p_src [in]

Pointer to the input stream to be hashed.
src_len [in]

Length in bytes of the input stream to be hashed.
p_key [in]

Pointer to the key to be used in MAC operation.
key_len [in]

Key length, in bytes.

p_mac [out]

Pointer to the result MAC, must be allocated by the caller.
mac_len [in]

Expected output MAC length, in bytes.

Return value

SGX_SUCCESS

-374 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

All outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

p_src, p_key, or p_mac pointer is NULL.

src_len, key_len, or mac_len size is less than or equal to O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

The function performs a standard HMAC hash over the input data buffer. Only
a 256-bit version of the HMAC hash is supported.

Use this function if the complete input data stream is available. Otherwise, use
the Init, Update... Update, Final procedure to compute the HMAC hash over
multiple input data sets.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_hmac256_init
Allocates and initializes the HMAC state to use p_key.
Syntax
sgx status t sgx hmac256 init(
const unsigned char *p_key,

int key len,
sgx_hmac state handle t *p hmac handle

)

Parameters

p_key [in]

-375 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Pointer to the key used in the message authentication operation.
key_len [in]

Key length, in bytes.

p_hmac_handle [out]

Pointer to the output HMAC state handle.

Return value

SGX_SUCCESS

All outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

p_key or p_hmac_handle is NULL, or key_len is less than or equal to O.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

Calling sgx_hmac256 init isthe first set in performing the HMAC 256-bit
hash over multiple data sets. Do not allocate memory for the HMAC state
returned by this function. The state is specific to the implementation of the
cryptography library, so the library performs the allocation itself. If the hash
over the desired data sets is completed or any error occurs during the hash
calculation process, call sgx_hmac256_close to free the state allocated by this
algorithm.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_hmac256_update
Authenticates chunks of a message during repetitive calls.

Syntax

-376 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx status t sgx hmac256 update (
const uint8 t *p src,

int src_len,
sgx_hmac state handle t hmac handle

) ;

Parameters

p_src [in]

Pointer to the input stream to be hashed.
src_len [in]

Length in bytes of the input stream to be hashed.
p_hmac_handle [in]

Pointer to the HMAC state handle.

Return value

SGX_SUCCESS

All outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

p_src or p_hmac_handle is NULL, or src_len is less than or equal to O.
SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

Use this functions as a part of an HMAC 256-bit hash calculation over multiple
data sets. For the HMAC hash calculation over a single data set, use the sgx
hmac sha256 msg function instead. Before calling this function on the first
data set, allocate and initialize the HMAC state structure, which will hold inter-
mediate hash results, using the sgx _hmac256 init function. To obtain the
hash after processing the final data set, call the sgx _hmac256 final func-
tion.

Requirements

-377 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_hmac256_final

Places the message authentication code in p_hash.

Syntax

sgx _status t sgx hmac256 final (
unsigned char *p_hash,

int hash len,
sgx_hmac state handle t hmac handle

)

Parameters

hash_len [in]

Expected MAC length, in bytes.
hmac_handle [in]

Pointer to the HMAC state handle.
p_hash [out]

Pointer to the resultant hash from the HMAC operation. This buffer should be
allocated by the calling code.

Return value

SGX_SUCCESS

All outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

p_hash or hmac_handle is NULL, or hash_len is less than or equal to O.
SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

This function returns the hash after performing the HMAC 256-bit hash cal-
culation over one or more data sets using the sgx _hmac256 update

-378 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

function. Memory for the hash should be allocated by the calling code. The
handle to the HMAC state used inthe sgx hmac256 update calls must be
passed as input.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_hmac256_close
Cleans up the HMAC state.

Syntax
sgx_status t sgx hmac256 close(

sgx_hmac state handle t hmac handle

)

Parameters

p_hmac_handle [in]

Pointer to the HMAC state handle.
Return value

SGX_SUCCESS

HMAC state is cleaned up successfull.
SGX_ERROR_UNEXPECTED

Internal cryptography library failed.

Description

Calling sgx_hmac256 close isthe last step after performing the HMAC
hash over multiple data sets. Use this function to clean and deallocate memory
used for storing the HMAC algorithm context state.

Requirements

-379 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_aes_gcm128_enc_init

Returns an allocated and initialized AES-GCM encrypt algorithm context state.
This should be part of the Init, Update ... Update, Final process when the AES-
GCM encryption is to be performed over multiple datasets. If a complete data-
set is available, you should call sgx rijndaell28GCM encrypt to perform
the encryption in a single call.
Syntax
sgx status t sgx aes gcml28 enc init (

const uint8 t *key,

const uint8 t *iv,

uint32 t iv_len,

const uint8 t *aad,

uint32 t aad len,
sgx aes state handle t* aes gcm state

) ;

Parameters
key [in]

Pointer to key to be used in the AES-GCM encryption operation. The size must
be 128 bits.

iv [in]

Pointer to the initialization vector to be used in the AES-GCM calculation. NIST
AES-GCM recommended IV size is 96 bits (12 bytes).

iv_len [in]

Specifies the length of the input initialization vector. The length should be 12
as recommended by NIST.

aad [in]

Pointer to the additional authentication data buffer used in the GCM MAC cal-
culation. The data in this buffer will not be encrypted. The field is optional and
could be NULL.

aad_len [in]

- 380 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Specifies the length of the additional authentication data buffer. This buffer is
optional and the size can be zero.

aes_gcm_state [out]

Handle to the context state used by the cryptography library to perform an
iterative AES-GCM 128-bit encryption. The algorithm stores the intermediate
results of performing the encryption over data sets.

Return value

SGX_SUCCESS

The AES-GCM encryption state is successfully allocated and initialized.
SGX_ERROR_INVALID_PARAMETER

If key, MAC, or IV pointer is NULL.

If AAD size is > 0 and the AAD pointer is NULL.

The key or handle pointer is NULL.

SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation.
SGX_ERROR_UNEXPECTED

Internal cryptography library failure occurred.

Description

Call sgx aes gcml28 enc init asthe first step in performing the AES-
GCM encrypt over multiple datasets. Do not allocate memory for the AES-GCM
state that this function returns. The state is specific to the implementation of
the cryptography library and thus the allocation is performed by the library
itself. If the encryption over the desired datasets is completed or any error
occurs during the encryption process, call sgx_aes gcm close to free the
state allocated by this algorithm.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

- 381 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_aes_gcm128_enc_update

Performs AES-GCM 128-bit encryption over the input dataset provided. This
function supports an iterative encryption over multiple datasets where aes
gcm handle contains the intermediate results of the encryption over pre-
vious datasets.

Syntax

sgx status t sgx aes gcml28 enc update (
uint8 t *p src,
uint32 t src_len,

uint8 t *p dst,
sgx_aes state handle t aes gcm state

)

Parameters

p_src [in]

Pointer to the input data stream to be encrypted.

src_len [in]

Specifies the length on the input data stream to be encrypted.
p_dst [out]

Pointer to the output cipher-text buffer.

aes_gcm_state [in]

Handle to the context state used by the cryptography library to perform AES-
GCM encryption.

Return value

SGX_SUCCESS

All the outputs are generated successfully.
SGX_ERROR_INVALID_PARAMETER

The source pointer, destination pointer, or AES handle is NULL.
The source length is O or greater than INT MAX.
SGX_ERROR_UNEXPECTED

Internal cryptography library failure occurred while performing the AES-GCM
encryption.

-382 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

NOTE:

Unexpected errors indicate that the AES-GCM state is not freed. Call sgx
aes gcm close to free the AES-GCM state and avoid memory leak.

Description

This function encrypts data in the source input and putsitinp dst.You
should use it after initializing the AES-GCM state with sgx_aes gcml128
enc_init.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_aes_gcm128_enc_get_mac

Obtains the authentication MAC from the given AES-GCM state.
Syntax

sgx_status_ t sgx aes gcml28 enc get mac(

uint8 t *mac,
sgx_aes state handle t aes gcm state

) ;

Parameters
aes_gcm_state [in]

Handle to the context state used by the cryptography library performing an
iterative AES-GCM encryption.

mac [out]

Pointer to SGX_AESGCM_MAC_SIZE buffer to store MAC. The memory for the
MAC should be allocated by the calling code.

Return value

SGX_SUCCESS

The MAC is obtained successfully.
SGX_ERROR_INVALID_PARAMETER

The MAC pointer or AES-GCM handle is NULL.

-383 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SGX_ERROR_UNEXPECTED

Internal cryptography library failure occurred while performing the AES-GCM
encryption.

NOTE:

If an unexpected error occurs, call sgx _aes gcm close to free the AES-
GCM state to avoid memory leak.

Description

Writes SGX_AESGCM_MAC_SIZE bytes of the tag value to the buffer indicated
by MAC.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

sgx_aes_gcm_close
Cleans up and frees the AES-GCM state.

Syntax
sgx status t sgx aes gcm close(

sgx_aes state handle t aes gcm state

) ;

Parameters

aes_gcm_state [in]

Pointer to the AES-GCM state handle.

Return value

SGX_SUCCESS

The AES-GCM state was deallocated successfully.
SGX_ERROR_UNEXPECTED

Internal cryptography library failure occurred.

-384 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Description

Call sgx _aes gcm close asthe last step after performing AES-GCM over
multiple datasets. Use this function to clean and deallocate the memory used
for storing the AES-GCM algorithm context state.

Requirements

Header sgx_tcrypto.h

Library sgx_tcrypto.lib

Types and Enumerations
This topic introduces the types and error codes in the following topics:

o Type Descriptions
o Error Codes

Type Descriptions

This topic section describes the following data types provided by the Intel®
SGX:

o sgx_enclave_id_t

o Sgx_status_t

e sgx_launch_token_t

e Sgx_exception_vector_t
e SgXx_exception_type_t

e SgX_cpu_context_t

« sSgx_exception_info_t

o Sgx_exception_handler_t
o Sgx_spinlock_t

o sgx_thread_t

o sgx_thread _mutex t

e sgx_thread_mutexattr_t
o sgx_thread_cond_t

o sgx_thread_condattr_t

« sgx_thread_sync_object_handle_t
e Sgx_misc_select_t

« sgx_attributes_t

e Sgx_misc_attribute_t

- 385 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

e SgX_isv_svn_t

e SgX_cpu_svn_t

o Sgx_key id_t

o sgx_key 128bit_t

« sgx_key request_t

e SgXx_measurement_t

e Sgx_mac_t

e Sgx_report_data_t

e Sgx_prod_id_t

o Sgx_target_info_t

e sgx_report_body t

o Sgx_report_t

e Sgx_aes _gcm _data t

o sgx_sealed_data_t

o Sgx_epid_group_id_t

o Sgx_basename_t

e SgX_quote_t

e SgX_quote_sign_type_t

o Sgx_spid_t

e Sgx_quote_nonce_t

o Sgx_att_key id_t

e sgx_gl _att_key id_t

o sgx_att_key id_ext_t

o Sgx_qe_report_info_t

» sgx_time_source_nonce_t
o SgX_time_t

e SgX_ps_cap_t

e SgX_ps_sec_prop_desc_t
e Sgx_mc_uuid_t

e SgX_ra_context_t

o Sgx_ra_key 128t

« sgx_ra_derive_secret_keys t
o sgx_ra_key type_t

e SgX_ra_msgl_t

e SgX_ra_msg2_t

e SgX_ra_msg3_t

o sgx_ecall_get_ga trusted_t

- 386 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

» sgx_ecall_get_msg3_trusted_t

o sgx_ecall_proc_msg2 trusted_t

o sgx_platform_info_t

o sgx_update_info_bit_t

o sgx_dh_msg1_t

e sgx_dh_msg2 t

e sgx_dh_msg3_t

o sgx_dh_msg3 body t

» sgx_dh_session_enclave_identity_t
o sgx_dh_session_role_t

« sgx_dh_session_t

o sgx_device_status_t

 align_req_t

« class template custom_alignment_aligned

sgx_enclave_id_t

An enclave ID, also referred to as an enclave handle. Used as a handle to an
enclave by various functions.

Enclave IDs are locally unique, i.e. within the platform, and the uniqueness is
guaranteed until the next machine restart.

Syntax

typedef uint64 t sgx enclave id t;

Requirements

Header

sgx_eid.h

sgx_status_t

Specifies the return status from an Intel SGX function call. For a list containing
all possible values of this data type, see Error Codes.

Syntax

typedef enum _status t{...} sgx_status t;

Requirements

Header

sgx_error.h

- 387 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_launch_token_t

An opaque type used to hold enclave launch information. Used by sgx_create_
enclave to initialize an enclave. The license is generated by the Launch
Enclave.

See more details in Loading and Unloading an Enclave.
Syntax
typedef uint8 t sgx launch token t[1024];

Requirements

Header sgx_urts.h

sgx_uswitchless_worker_type_t

Defines Switchless Calls worker thread type, trusted or untrusted. A worker
can be either trusted (executed inside enclave) or untrusted (executed out-
side enclave).

Syntax
typedef enum {

SGX USWITCHLESS WORKER TYPE UNTRUSTED,
SGX USWITCHLESS WORKER TYPE TRUSTED

} sgx uswitchless worker type t;

Requirements

Header sgx_uswitchless.h

sgx_uswitchless_worker_event_t

An application may register a callback to receive Switchless Calls events. The
most useful information is presented by 4 worker events: a worker thread
starts, a worker thread is idle , a worker thread missed some tasks, a worker
thread exits.

Syntax
typedef enum {

SGX_USWITCHLESS WORKER EVENT START,
SGX_USWITCHLESS WORKER EVENT IDLE,
SGX_USWITCHLESS WORKER EVENT MISS,
SGX_USWITCHLESS WORKER EVENT EXIT,

- 388 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

_SGX_USWITCHLESS_WORKER_EVENT_NUM,
} sgx uswitchless worker event t;

Requirements

Header sgx_uswitchless.h

sgx_uswitchless_worker_stats_t

Switchless Calls gather statistics of calls processed by worker threads, and
calls missed by worker threads and handled using fallback to regular
ECALLs/OCALLs . An application can access the statistics values if it is
registered to callbacks.

Syntax
typedef struct {

uint32 t processed;
uint32 t missed;

} sgx uswitchless worker stats t;

Members
processed

32-bit counter that counts the number of tasks that all workers have pro-
cessed.

missed
32-bit counter that counts the number of tasks that all workers have missed.

Requirements

Header sgx_uswitchless.h

sgx_uswitchless_worker_callback_t

Callback function that is called upon worker threads events and can be used
to collect feature statistics and detect feature behavior for configuration tun-
ing or other needs.

Syntax

typedef void (*sgx uswitchless worker callback t) (

sgx_uswitchless worker type t type,

sgx _uswitchless worker event t event,

- 389 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

const sgx uswitchless worker stats t* stats);

Parameters

type

Worker thread type .

event

Type of the event occurred.

stats

Pointer to statistics data.

Requirements

Header sgx_uswitchless.h

sgx_uswitchless_config_t

Switchless Calls configuration structure passed to sgx create enclave
ex to select feature configuration.

Syntax

typedef struct

{

uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

switchless calls pool size gwords;
num_uworkers;

num_tworkers;

retries before fallback;

retries before sleep;

sgx_uswitchless worker callback t

callback

func[SGX USWITCHLESS WORKER EVENT NUM];

} sgx uswitchless config t;

Members

switchless_calls_pool_size_qwords

Size of the Switchless Calls task pool (1 indicates a task pool of 64 tasks).

Default value: 1 (64 tasks)
Max value: 8 (512 tasks)

#define SL_

#define SL

DEFUALT MAX TASKS QWORDS 1 //64

MAX TASKS MAX QWORDS 8 //512

num_uworkers

-390 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Number of untrusted worker threads that serve Switchless OCALLs.
num_tworkers

Number of trusted worker threads that serve Switchless ECALLs. This number
is limited by TCSNum defined in an enclave configuration file. Exceeding the
number of available TCS prevents several trusted worker threads from enter-
ing the enclave.

retries_before_fallback

Number of retries client threads wait (assembly pause) for a worker thread to
start executing a Switchless Call before falling back to a regular ECALL/OCALL.

Default value: 20000
#define SL DEFAULT FALLBACK RETRIES 20000
retries_before_sleep

Number of retries worker threads wait (assembly pause) on the Task Pool for
an incoming Switchless Call request before the worker thread goes to sleep .

Default value: 20000

#define SL DEFAULT SLEEP RETRIES 20000

Callback_func

Array of 4 callback functions for all event types. Optional, default value: NULL.
Default Initialization

At least one of num uworkers or num_tworkers must not be O. If both are
0,sgx create enclave ex willreturnan error.

Other fields passed as O are replaced with the default field value.
A macro with default values provided.

#define SGX USWITCHLESS CONFIG INITIALIZER {0, 1, 1, O,
0, { 01} }

It will be translatedto {1, 1, 1, 20000, 20000, { O 1} }

Requirements

Header sgx_uswitchless.h

-391 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_exception_vector_t

The sgx_exception vector t enumeration contains the enclave sup-
ported exception vectors. If the exception vector is #BP, the exception type is
SGX EXCEPTION SOFTWARE,; otherwise, the exception type is SGX
EXCEPTION HARDWARE.

Syntax

typedef enum sgx exception vector t

{

/* DIV and DIV instructions */
/* For Intel use only */

SGX EXCEPTION VECTOR DE = ,
4
, /* INT 3 instruction */
’
’

SGX EXCEPTION VECTOR DB
SGX_EXCEPTION VECTOR BP
SGX EXCEPTION VECTOR BR =
SGX_ EXCEPTION VECTOR UD =
opcode */

SGX EXCEPTION VECTOR MF =
WAIT/FWAI instruction. */
SGX EXCEPTION VECTOR_AC 17, /* Any data reference in memory */
SGX EXCEPTION VECTOR XM = 19, /* SSE/SSE2/SSE3 instruction */

} sgx exception vector t;

/* BOUND instruction */

0
1
3
5
6, /* UD2 instruction or reserved

16, /* x87 FPU floating-point or

Requirements

Header sgx_trts exception.h

sgx_exception_type_t

The sgx _exception type t enumeration contains values that specify the
exception type. If the exception vector is #BP (BreakPoint), the exception
type is SGX EXCEPTION SOFTWARE;otherwise, the exception type is SGX
EXCEPTION HARDWARE.

Syntax
typedef enum sgx exception type t

{

SGX EXCEPTION HARDWARE = 3,
SGX_ EXCEPTION SOFTWARE =

} sgx exception type t;

|
)
~

Requirements

Header sgx_trts exception.h

-392 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_cpu_context_t

The sgx_cpu content t structure contains processor-specific register
data. Custom exception handling uses sgx cpu context t structure to

record the CPU context at exception time.

Syntax

#if defined (M X64)

defined

typedef struct cpu context t

{
uint64 t
uint64 t
uint64 t
uint64 t
uinto64 t
uinto64 t
uint6d t
uint6d t
uint64 t
uint64 t
uint64 t
uint64 t
uinto64 t
uinto64 t
uint6d t
uint6d t
uint64 t
uint64 t

rax;
rcx;
rdx;
rbx;
rsp;
rbp;
rsi;
rdi;
r8;
r9;
rl0;
rll;
rl2;
rl3;
rl4d;
rlb5;
rflags;
rip;

} sgx_cpu_context t;

#else

typedef struct cpu context t

{
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t
uint32 t

eax;
ecx;
edx;
ebx;
esp;
ebp;
esi;
edi;
eflags;
eip;

} sgx_cpu_context t;

#endif

Members

rax, rcx, rdx, rbx, rsp, rbp, rsi,

rdi, r8 —r15

(__x86 64)

-393 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

64-bit general purpose registers

rflags

64-bit program status and control register
rip

64-bit instruction pointer

eax, ecx, edx, ebx, esp, ebp, esi, edi
32-bit general purpose registers

eflags

32-bit program status and control register
eip

32-bit instruction pointer

Requirements

Header sgx_trts exception.h

sgx_exception_info_t

A structure of this type contains an exception record with a description of the
exception and processor context record at the time of exception.

Syntax

typedef struct exception info t

{

Sgx cpu context t cpu context;
Sgx_exception vector t exception vector;
sSgx_exception type t exception type;

} sgx exception info t;

Members

cpu_context

The context record that contains the processor context at the exception time.
exception_vector

The reason the exception occurs. This is the code generated by a hardware
exception.

-394 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

exception_type

The exception type.

SGX EXCEPTION HARDWARE (3) indicatesa HW exception.
SGX EXCEPTION SOFTWARE (6) indicatesa SW exception.

Requirements

Header sgx_trts exception.h

sgx_exception_handler_t
Callback function that serves as a custom exception handler.
Syntax

typedef int (* sgx exception handler t) (sgx exception
info t *info);

Members
info

A pointerto sgx _exception info_ t structure that receives the exception
information.

Return value
EXCEPTION_CONTINUE_SEARCH (0)

The exception handler did not handle the exception and the RTS should call
the next exception handler in the chain.

EXCEPTION_CONTINUE_EXECUTION (-1)

The exception handler handled the exception and the RTS should continue
the execution of the enclave.

Requirements

Header sgx_trts exception.h

sgx_spinlock_t

Data type for a trusted spin lock.

Syntax

typedef volatile uint32 t sgx spinlock t;

-395 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Members
sgx_spinlock t definesaspin lock object inside the enclave.

Requirements

Header sgx_spinlock.h

sgx_thread_t

Data type to uniquely identify a trusted thread.
Syntax

typedef uintptr * sgx thread t;

Members

sgx_thread t isanopaque datatype with no member fields visible to
users. This data type is subject to change. Thus, enclave code should not rely
on the contents of this data object.

Requirements

Header sgx_thread.h

sgx_thread_mutex_t

Data type for a trusted mutex object.
Syntax

typedef struct sgx thread mutex
{

size t m _refcount;

uint32 t m _control;

volatile uint32 t m lock;

sgx_thread t m owner;

sgx_ thread queue t m queue;
} sgx _thread mutex t;

Members

m_control

Flags to define whether a mutex is recursive or not.

-396 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

m_refcount

Reference counter of the mutex object. It will be increased by 1 if the mutex is
successfully acquired, and be decreased by 1 if the mutex is released.

NOTE
The counter will be greater than one only if the mutex is recursive.

m_lock
The spin lock used to guarantee atomic updates to the mutex object.
m_owner

The thread that currently owns the mutex writes its unique thread identifier in
this field, which otherwise is NULL. This field is used for error checking, for
instance to ensure that only the owner of a mutex releases it.

m_queue

Ordered list of threads waiting to acquire the ownership of the mutex. The
queue itself is a structure containing a head and a tail for quick insertion and
removal under FIFO semantics.

Requirements

Header sgx_thread.h

sgx_thread_mutexattr_t

Attribute for the trusted mutex object.
Syntax

typedef struct sgx thread mutex attr
{

unsigned char m_dummy;
} sgx thread mutexattr t;

Members
m_dummy
Dummy member not supposed to be used.

Requirements

Header sgx_thread.h

-397 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_thread_cond_t

Data type for a trusted condition variable.
Syntax

typedef struct sgx thread cond

{

sgx_spinlock t m lock;
sgx_thread queue t m queue;

} sgx _thread cond t;

Members

m_lock

The spin lock used to guarantee atomic updates to the condition variable.
m_queue

Ordered list of threads waiting on the condition variable. The queue itself is a
structure containing a head and a tail for quick insertion and removal under
FIFO semantics.

Requirements

Header sgx_thread.h

sgx_thread_condattr_t

Attribute for the trusted condition variable.
Syntax

typedef struct sgx thread cond attr
{

unsigned char m_dummy;

} sgx thread condattr t;

Members
m_dummy
Dummy member not supposed to be used.

Requirements

Header sgx_thread.h

-398 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_thread_sync_object_handle_t
Data type for Intel® SGX thread synchronization object handle.
Syntax

typedef struct sgx thread sync object t *sgx thread
sync_object handle t;

Requirements

Header sgx_thread.h

sgx_misc_select_t

Enclave misc select bits. The value is 4 byte in length. Currently all the bits are
reserved for future extension.

Requirements

Header sgx_attributes.h

sgx_attributes_t

Enclave attributes definition structure.

NOTE

When specifying an attributes mask used in key derivation, at a minimum the
flags that should be set are INITED, DEBUG and RESERVED bits.

NOTE

The XGETBV instruction can be executed to determine the register sets,
which are parts of the XSAVE state, which corresponds to the xfrm value of
attributes. Since the save state depends on the host system and the operating
system, an attributes mask generally does not include these bits (XFRM is set
to 0).

Syntax
typedef struct sgx attributes t

{

uint64 t flags;
uint64 t xfrm;

} sgx _attributes t;

Members

-399 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

flags

Flags is a combination of the following values:

Value Description
SGX_FLAGS_INITTED The enclave is initialized
0x000000000000000TULL

SGX_FLAGS_DEBUG The enclave is a debug enclave
0x0000000000000002ULL

SGX_FLAGS_MODEG64BIT The enclave runs in 64 bit mode

0x0000000000000004ULL

SGX_FLAGS_PROVISION_KEY The enclave has access to a provision key
0x0000000000000010ULL

SGX_FLAGS_EINITTOKEN_KEY The enclave has access to a launch key
0x0000000000000020ULL

SGX_FLAGS_KSS The enclave requires the KSS feature.
0x0000000000000080ULL

xfrm

xfrm is a combination of the following values:

Value Description

SGX_XFRM_LEGACY FPU and Intel® Streaming SIMD Extensions states are
0x0000000000000003ULL saved

SGX_XFRM_AVX Intel® Advanced Vector Extensions state is saved
0x0000000000000006ULL

Requirements

Header sgx_attributes.h

sgx_misc_attribute_t

Enclave misc select and attributes definition structure.
Syntax

typedef struct sgx misc attributes t

{

sgx_attributes t secs_attr;
sgx_misc_select t misc_select;
} sgx misc attribute t;

Members

secs_attr

- 400 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The Enclave attributes.
misc_select
The Enclave misc select configuration.

Requirements

Header sgx_attributes.h

sgx_isv_svn_t

ISV security version. The value is 2 bytes in length. Use this value in key deriv-
ation and obtain it by getting an enclave report (sgx _create report).

Requirements

Header sgx_key.h

sgx_cpu_svn_t

sgx_cpu_svn_tisa 128-bit value representing the CPU security version.
Use this value in key derivation and obtain it by getting an enclave report
(sgx_create report).

Syntax

#define SGX CPUSVN SIZE 16

typedef struct sgx cpu svn_ t {

uint8_t svn[SGX_CPUSVN_SIZE];
} sgx_cpu svn t;

Requirements

Header sgx_key.h

sgx_key_id_t

sgx_key id tisa256 bit value used in the key request structure. The
value is generally populated with a random value to provide key wear-out pro-
tection.

Syntax
#define SGX KEYID SIZE 32

typedef struct sgx key id t {

uint8 t id[SGX KEYID SIZE];

- 401 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

} sgx _key 1id t;

Requirements

Header sgx_key.h

sgx_key_128bit_t

A 128 bit value that is the used to store a derived key from for example the
sgx_get key function.

Requirements

Header sgx_key.h

sgx_key_request_t

Data structure of a key request used for selecting the appropriate key and any

additional parameters required in the derivation of the key. This is an input
parameter for the sgx _get key function.

Syntax
typedef struct key request t ({

uintl6 t key name;

uintl6 t key policy;
sgx_1sv_svn_t 1isv_svn;

uintl6 t reservedl;
sSgx_cpu_svn_t cpu_svn;
sgx_attributes t attribute mask;
sgx_key id t key id;

sgx _misc select t misc mask;

sgx _config svn t config svn
uint8 t reserved2[434]

} sgx _key request t;

Members
key_name

The key name requested. Possible values are below:

Key Name Value Description
SGX_KEYSELECT _ |0x0000 |Launch key
EINITTOKEN

SGX_KEYSELECT |0x0001 |Provisioning key

- 402 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

PROVISION

SGX_KEYSELECT [0x0002 |Provisioning seal key
PROVISION SEAL

SGX KEYSELECT |0x0003 |Report key

REPORT

SGX_KEYSELECT _ [0x0004 |Seal key

SEAL

key_policy

Identify which inputs are required for the key derivation. Possible values are
below:

Key policy name Value Description

SGX KEYPOLICY MRENCLAVE 0x0001 |Derive key using the enclave’s
ENCLAVE measurement
register

SGX KEYPOLICY MRSIGNER 0x0002 |Derive key using the enclave’s
SIGNER measurement register
SGX_ KEYPOLICY NOISVPRODID |0x0004 |Derive key without the
enclave's ISVPRODID

SGX_KEYPOLICY CONFIGID 0x0008 |Derive key with the enclave's
CONFIGID

SGX KEYPOLICY ISVFAMILYID |0x0010 |Derive key with the enclave's
ISVFAMILYID

SGX KEYPOLICY ISVEXTPRODID|0x0020 [Derive key with the enclave's
ISVEXTPRODID

NOTE

If MRENCLAVE is used, that key can only be rederived by that particular
enclave.

isv_svn

The ISV security version number that should be used in the key derivation.
reserved1

Reserved for future use. Must be zero.

cpu_svn

The TCB security version number that should be used in the key derivation.

attribute_mask

- 403 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Attributes mask used to determine which enclave attributes must be included
in the key. It only impacts the derivation of a seal key, a provisioning key, and a
provisioning seal key. See the definition of sgx_attributes _t.

key_id
Value for key wear-out protection. Generally initialized with a random number.
misc_mask

The misc mask used to determine which enclave misc select must be included
in the key. Reserved for future function extension.

config_svn

The enclave CONFIGSVN field.

reserved2

Reserved for future use. Must be set to zero.

Requirements

Header sgx_key.h

sgx_measurement_t

sgx_measurement t isa256-bit value representing the enclave meas-
urement.

Syntax
#define SGX HASH SIZE 32

typedef struct sgx measurement t

uint8 t m[SGX HASH SIZE];
} sgx measurement t;

Requirements

Header sgx_report.h

sgx_mac_t
This type is utilized as storage for the 128-bit CMAC value of the report data.

Requirements

Header sgx_report.h

- 404 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_report_data_t

sgx_report data tisa5712-bit value used for communication between
the enclave and the target enclave. This is one of the inputs to the sgx cre-
ate report function.

Syntax
#define SGX REPORT DATA SIZE 64

typedef struct sgx report data t {

uint8_t d[SGX_REPORT DATA SIZE];
} sgx report data t;

Requirements

Header sgx_report.h

sgx_prod_id_t

A 16-bit value representing the ISV enclave product ID. This value is used in
the derivation of some keys.

Requirements

Header sgx_report.h

sgx_target_info_t

Data structure of report target information. This is an input to functions sgx
create reportand sgx init quote,which are used to identify the
enclave (its measurement and attributes), which will be able to verify the gen-
erated REPORT.

Syntax
typedef struct targe info t

{

sgx_measurement t mr_ enclave;
sgx_attributes t attributes;
uint8 t reservedl([2];
sgx _config svn t config svn;
sgx _misc select t misc select;
uint8 t reserved2([8];
sgx_config id t config id;
uint8 t reserved3([384];

} sgx target info t;

- 405 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Members

mr_enclave

Enclave hash of the target enclave
attributes

Attributes of the target enclave

reserved1

Reserved for future use. Must be set to zero.
config_svn

Enclave CONFIGSVN.

misc_select

Misc select bits for the target enclave. Reserved for future function extension.
reserved2

Reserved for future use. Must be set to zero.
config_id

Enclave CONFIGID

reserved3

Reserved for future use. Must be set to zero.

Requirements

Header sgx_report.h

sgx_report_body_t

Data structure that contains information about the enclave. This data structure
is a part of the sgx report t structure.

Syntax

typedef struct report body t
{

sgx_cpu svn_t cpu svn;

sgx _misc select t misc select;
uint8 t reservedl[12];
sgx_1isvext prod id t isv_ext prod id;
sgx_attributes t attributes;
sgx_measurement t mr_ enclave;

- 406 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

uint8 t reserved2[32];
sgx_measurement t mr_signer;
uint8 t reserved3[32];
sgx _config id t config id;
sgx_prod id t isv_prod id;
sgx_1sv_svn_t 1isv_svn;
sgx_config svn t config svn;
uint8 t reserved4[42];
sgx_isvfamily id t isv_family id;
sgx_report data t report data;
} sgx report body t;

Members

cpu_svn

Security version number of the host system TCB (CPU).

misc_select

Misc select bits for the target enclave. Reserved for future function extension.
reserved1

Reserved for future use. Must be set to zero.

isv_ext_prod_id

ISV assigned Extended Product ID.

attributes

Attributes for the enclave. See sgx_attributes_t for the definitions of these
flags.

mr_enclave

Measurement value of the enclave.

reserved?2

Reserved for future use. Must be set to zero.

mr_signer

Measurement value of the public key that verified the enclave.
reserved3

Reserved for future use. Must be set to zero.

config_id

- 407 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The enclave CONFIGID.

isv_prod_id

SV Product ID of the enclave.

isv_svn

ISV security version number of the enclave.
config_svn

CONFIGSVN field.

reserved4

Reserved for future use. Must be set to zero.
isv_family_id

ISV assigned Family ID.

report_data

Set of data used for communication between the enclave and the target
enclave.

Requirements

Header sgx_report.h

sgx_report_t

Data structure that contains the report information for the enclave. This is the
output parameter from the sgx create report function. Thisis the input
parameter for the sgx_init quote function.

Syntax
typedef struct report t

{

sgx_report body t body;
sgx_key id t key id;
sSgx _mac_ t mac;

} sgx_ report t;
Members

body

The data structure containing information about the enclave.

- 408 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

key_id

Value for key wear-out protection.

mac

The CMAC value of the report data using report key.

Requirements

Header sgx_report.h

sgx_aes_gcm_data_t

The structure contains the AES GCM* data, payload size, MAC* and payload.
Syntax

typedef struct aes gcm data t

{

uint32 t payload size;
uint8 t reserved[1l2];
uint8 t payload tag[SGX SEAL TAG SIZE];
uint8 t payloadl[];
} sgx _aes gcm data t;

Members
payload_size

Size of the payload data which includes both the encrypted data followed by
the additional authenticated data (plain text). The full payload array is part of
the AES GCM MAC calculation.

reserved

Padding to allow the data to be 16 byte aligned.
payload_tag

AES-GMAC of the plain text, payload, and the sizes
payload

The payload data buffer includes the encrypted data followed by the optional
additional authenticated data (plain text),which is not encrypted.

NOTE

- 409 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The optional additional authenticated data (MAC or plain text) could be data
which identifies the seal data blob and when it was created.

Requirements

Header sgx_tseal.h

sgx_sealed_data_t

Sealed data blob structure containing the key request structure used in the
key derivation. The data structure has been laid out to achieve 16 byte align-
ment. This structure should be allocated within the enclave when the seal
operation is performed. After the seal operation, the structure can be copied
outside the enclave for preservation before the enclave is destroyed. The
sealed data structure needs to be copied back within the enclave before
unsealing.

Syntax

typedef struct sealed data t
{

sgx_key request t key request;
uint32 t plain text offset;
uint8 t reserved[12];
sgx_aes gcm data t aes data;

} sgx sealed data t;

Members

key_request

The key request used to derive the seal key.
plain_text_offset

The offset within the aes data structure payload to the start of the optional
additional MAC text.

reserved

Padding to allow the data to be 16 byte aligned.

aes_data

Structure contains the AES GCM data (payload size, MAC, and payload).

Requirements

Header sgx_tseal.h

-410 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_epid_group_id_t

Type for Intel® EPID group id

Syntax

typedef uint8 t sgx epid group id t[4];

Requirements

Header sgx_quote.h

sgx_basename_t

Type for base name used in sgx _quote.
Syntax

typedef struct basename t

{

uint8 t name[32];
} sgx basename t;

Members
name
The base name used in sgx _quote.

Requirements

Header sgx_quote.h

sgx_quote_t

Type for quote used in remote attestation.
Syntax

typedef struct gquote t

{

uintl6 t version;

uintl6 _t sign_ type;

sgx_epid group id t epid group id;
sgx_1sv_svn_t ge svn;
sgx_1sv_svn_t pce_ svn;

uint32 xeid;

sgx_basename_ t basename;

-411 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_report body t report body;
uint32 t signature_len;
uint8 t signaturel];

} sgx_quote t;

Members

version

The version of the quote structure.

sign_type

The indicator of the Intel® EPID signature type.
epid_group_id

The Intel® EPID group id of the platform belongs to.
ge_svn

The svn of the QE.

pce_svn

The svn of the PCE.

extended_epid_group_id

The extended Intel® EPID group ID.
basename

The base name used in sgx_quote.
report_body

The report body of the application enclave.
signature_len

The size in byte of the following signature.
signature

The place holder of the variable length signature.

Requirements

Header sgx_quote.h

sgx_quote_sign_type_t
Enum indicates the quote type, linkable or un-linkable

-412 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Syntax
typedef enum {

SGX UNLINKABLE SIGNATURE,
SGX_ LINKABLE SIGNATURE

} sgx quote sign type t;

Requirements

Header sgx_quote.h

sgx_spid_t

Type for a service provider ID.
Syntax

typedef struct spid t

{

uint8_t id[16];
} sgx _spid t;

Members
id
The ID of the service provider.

Requirements

Header sgx_quote.h

sgx_quote_nonce_t

This data structure indicates the quote nonce.
Syntax

typedef struct sgx quote nonce

{

uint8 t rand[16];
} sgx _quote nonce t;

Members

rand

-413 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The 16 bytes random number used as nonce.

Requirements

Header sgx_quote.h

sgx_att_key_id_t

An opaque type which identifies the attestation key to use when generating a
quote.

Syntax
typedef struct att key id t {

uint8 t att key id[256];
} sgx_att key id t;

Requirements

Header sgx_quote.h

sgx_ql_att_key_id_t

Aa single attestation key. Contains both QE identity and the attestation
algorithm ID.

Syntax
typedef struct sgx gl att key id t
{

uintle6 t id;
uintl6 t version;
uintl6 t mrsigner length;
uint8 t mrsigner[48];
uint32 t prod id;
uint8 t extended prod id[16];
uint8 t config id[64];
uint8 t family id[16];
uint32 t algorithm id;

}sgx gl att key id t;

Members
id

Structure ID.

-414 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

version
Structure version.
mrsigner_length
Number of valid bytes in MRSIGNER.
mrsigner

SHA256 or SHA384 hash of the Public key that signed the QE. The lower
bytes contain MRSIGNER. Bytes beyond mrsigner_length are 'O's.

prod_id

Legacy Product ID of the QE.

extended_prod_id

Extended Product ID of the QE. All O's for legacy format enclaves.
config_id

Config ID of the QE.

family_id

Family ID of the QE.

algorithm_id

Identity of the attestation key algorithm.

Requirements

Header sgx_quote.h

sgx_att_key_id_ext_t
An extended attestation key to use when generating a quote.

Syntax
typedef struct sgx att key id ext t
{

sgx_gl att key id t base;
uint8 t spid[16];
uintl6 t att key type;
uint8 t reserved[80];

-415 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

}sgx att key id ext t;

Members

base

The base structure of sgx_ql_att_key_id_t.

spid

Service provider ID for EPID quote. Should be Os for ECDSA quote.
att_key_type

For non-EPID quote, it should be O. For EPID quote, it equals to sgx_quote_
sign_type_t.

reserved

The structure should have the same size as sgx_att_key_id_t.

Requirements

Header sgx_quote.h

sgx_qe_report_info_t

Data structure that contains the information from app enclave and report gen-
erated by Quoting Enclave. This is the input and output parameter from the
sgx_get quote ex function.

Syntax
typedef struct ge report info t
{

sgx_quote nonce t nonce;
sgx_target info t app enclave target info;
sgx_report t ge report;

} sgx _ge report info t;

Members

nonce

The quote nonce from app enclave used to generate quote.
app_enclave_target_info

The target info of the app enclave used to generate quote.

-416 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

ge_report
The report generated by Quote Enclave.

Requirements

Header sgx_quote.h

sgx_time_source_nonce_t
Nonce of time source. It's opaque to users.
Syntax

typedef uint8 t sgx time source nonce t[32];

Requirements

Header sgx_tae service.h

sgx_time_t

Type for trusted time.

Syntax

typedef uint64 t sgx time t;

Requirements

Header sgx_tae service.h

sgx_ps_cap_t

Type indicating the platform service capability.
Syntax

typedef struct sgx ps cap t

{

uint32 t ps cap0;
uint32 t ps capl;
} sgx _ps cap_ t;

Members

ps_cap0

Bit O : Trusted Time service

-417 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Bit 1 : Monotonic Counter service
Bit 2 : Reserved

Bit 3 : Secure Message service
Bit 4-31 : Reserved

ps_cap1

Bit 0-31 : Reserved

Requirements

Header sgx_uae service.h

sgx_ps_sec_prop_desc_t

Security property descriptor of platform service. It's opaque to users.
Syntax

typedef struct ps sec prop desc

{

uint8 t sgx ps sec prop desc[256];
} sgx ps sec prop desc t;

Requirements

Header sgx_tae service.h

sgx_ps_sec_prop_desc_ex_t

Security property descriptor of platform service with extended platform ser-
vice information.

Syntax
typedef struct ps sec prop desc ex

{

sgx _ps_sec _prop desc t ps sec prop desc;
sgx_measurement t pse mrsigner;
sgx_prod id t pse prod id;
sgx_1sv_svn_t pse isv_svn;

} sgx ps sec prop desc ex t;

Requirements

-418 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header sgx_tae service.h

sgx_mc_uuid_t

The data structure of a monotonic counter.

Syntax

#define SGX MC UUID COUNTER ID SIZE 3
#define SGX MC UUID NONCE SIZE 13

typedef struct mc uuid

{

uint8 t counter id[SGX MC UUID COUNTER ID SIZE];
uint8 t nonce[SGX MC UUID NONCE SIZE];

} sgx_mc uuid t;

Members

counter_id

ID number of the monotonic counter.

nonce

Nonce associated with the monotonic counter.

Requirements

Header sgx_tae service.h

sgx_ra_context_t

Type for a context returned by the key exchange library.
Syntax

typedef uint32 t sgx ra context t;

Requirements

Header sgx_key exchange.h

sgx_ra_key_128_t
Type for 128 bit key used in remote attestation.
Syntax

-419 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

typedef uint8 t sgx ra key 128 t[l6];

Requirements

Header sgx_key exchange.h

sgx_ra_derive_secret_keys_t

The sgx_ra derive secret keys t function should take the Diffie-Hell-
man shared secret as input to allow the ISV enclave to generate their own
derived shared keys (SMK, SK, MK and VK). Implementation of the function
should return the appropriate return value.
Syntax
typedef sgx status t(*sgx ra derive secret keys t) (

const sgx_ec256_dh shared t* p shared key,

uintl6_t kdf id,

sgx_ec_key 128bit t* p smk key,

sgx_ec_key 128bit t* p sk key,

sgx_ec _key 128bit t* p mk key,
sgx_ec_key 128bit t* p vk key

) ;

Parameters

p_shared_key [in]

The the Diffie-Hellman shared secret.
kdf_id [in]

Key Derivation Function ID.
p_smk_key [out]

The output SMK.
p_sk_key [out]

The output SK.

p_mk_key [out]

The output MK.

p_vk_key [out]

The output VK.

Return value
SGX_SUCCESS

-420 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Indicates success.

SGX_ERROR_INVALID_PARAMETER

Indicates an error that the input parameters are invalid.
SGX_ERROR_KDF_MISMATCH

Indicates key derivation function does not match.
SGX_ERROR_OUT_OF_MEMORY

Not enough memory is available to complete this operation, or contexts reach
the limits.

SGX_ERROR_UNEXPECTED
Indicates that an unexpected error occurred.
Description

A pointer to a call back routine matching the function prototype.

Requirements

Header sgx_tkey exchange.h

sgx_ra_key_type_t

Enum of the key types used in remote attestation.
Syntax

typedef enum sgx ra key type t

{

SGX RA KEY SK = 1,
SGX RA KEY MK,
SGX RA KEY VK,

} sgx ra key type t;

Requirements

Header sgx_key exchange.h

sgx_ra_msg1_t

This data structure describes the message 1 that is used in remote attestation
and key exchange protocol.

-421 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Syntax
typedef struct sgx ra msgl t
{

sgx_ec256 public t g a;
sgx_epid group id t gid;
} sgx _ra msgl t;

Members
g_a (Little Endian)

The public EC key of an application enclave, based on NIST P-256 elliptic
curve.

gid (Little Endian)
ID of the Intel® EPID group of the platform belongs to.

Requirements

Header sgx_key exchange.h

sgx_ra_msg2_t

This data structure describes the message 2 that is used in the remote attest-
ation and key exchange protocol.

Syntax

typedef struct sgx ra msg2 t

{

sgx_ec256 public t g b;
sgx_spid t spid;
uintl6_t quote type;
uintl6_t kdf id;
sgx_ec256_ signature_ t sign gb ga;
sgx_mac_t mac;
uint32 t sig rl size;
uint8 t sig rl[];
} sgx _ra msg2 t;

Members

g b (Little Endian)
Public EC key of service provider, based on the NIST P-256 elliptic curve.

422 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

spid

ID of the service provider

quote_type (Little Endian)

Indicates the quote type, linkable (1) or un-linkable (0).
kdf_id (Litte Endian)

Key derivation function id.

sign_gb_ga (Litte Endian)

ECDSA Signature of (g_b | | g_a), using the service provider's ECDSA private
key corresponding to the public key specified in sgx_ra init orsgx ra
init ex function,where g b isthe public EC key of the service provider and
g _a isthe public key of application enclave, provided by the application
enclave, in the remote attestation and key exchange message 1.

mac

AES-CMAC of gb, spid 2-byte TYPE, 2-byte KDF-ID,and sign gb ga using
SMK as the AES-CMAC key. SMK is derived as follows:

KDK= AES-CMAC (key0, LittleEndian (gab x-coordinate))
SMK = AES-CMAC (KDK, O0OxO1|]|"SMK’"||0x00]|]0x80]0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

e acounter (0x01)

« alabel: the ASCIl representation of the string 'SMK' in Little Endian
format

» abit length (0x80)

If the ISV needs to use a different KDF than the default KDF used by Intel®
SGX PSW, the ISV canuse the sgx ra init ex APl to provide a callback
function to generate the remote attestation keys used in the SIGMA protocol
(SMK), verification (VK) and returned by the APl sgx ra get keys (SK, MK).

sig_rl_size
Size of the sig r1,in bytes.
sig_rl

- 423 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Pointer to the Intel® EPID Signature Revocation List Certificate of the Intel®
EPID group identified by the gid in the remote attestation and key exchange
message 1.

Requirements

Header sgx_key exchange.h

sgx_ra_msg3_t

This data structure describes message 3 that is used in the remote attestation
and key exchange protocol.

Syntax
typedef struct sgx ra msg3 t
{

sgx_mac_t mac;
sgx_ec256 public t g a;
sgx_ps_sec _prop desc t ps sec prop;
uint8 t quotel];

} sgx_ra msg3 t;

Members
mac

AES-CMAC of g_a, ps_sec_prop, GID, and quote[], using SMK. SMK is derived
follows:

KDK = AES-CMAC (key0, LittleEndian (gab x-coordinate))
SMK = AES-CMAC (KDK, O0OxO1|]|"SMK’"||0x00]|]0x80]]0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

e acounter (0x01)

« alabel (the ASCII representation of the string 'SMK' in Little Endian
format)

« abit length (0x80)

-424 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

If the ISV needs to use a different KDF than the default KDF used by Intel®
SGX PSW, the ISV can use the sgx ra init ex APIto provide a callback
function to generate the remote attestation keys used in the SIGMA protocol
(SMK), verification (VK) and returned by the APl sgx ra get keys (SK, MK).

g_a (Little Endian)
Public EC key of application enclave
ps_sec_prop

Security property of the Intel® SGX Platform Service. If the Intel® SGX Platform
Service security property information is not required in the remote attestation
and key exchange process, this field will be all Os.

quote

Quote returned from sgx get quote. The first 32-byte report body.re-
port data field in Quote is set to SHA256 hash of ga, gb and VK, and the
second 32-byte is set to all Os. VK is derived from the Diffie-Hellman shared
secret elliptic curve field element between the service provider and the
application enclave:

KDK= AES-CMAC (key0, LittleEndian (gab x-coordinate))
VK = AES-CMAC (KDK, O0xO01]|’VK"|]0x00|]0x80]|0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the VKcalculation includes:

e acounter (0x01)
« alabel (the ASCII representation of the string 'VK' in Little Endian format)
« abit length (0x80).

If the ISV needs to use a different KDF than the default KDF used by Intel®
SGX PSW, the ISV canuse the sgx_ra init ex APl to provide a callback
function to generate the remote attestation keys used in the SIGMA protocol
(SMK), verification (VK) and returned by the APl sgx _ra get keys (SK, MK).

Requirements

Header sgx_key exchange.h

- 425 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_ecall_get_ga_trusted_t

Function pointer of proxy function generated from sgx_tkey
exchange.edl.

Syntax

typedef sgx status t (* sgx ecall get ga trusted t) (

sgx_enclave id t eid,

int* retval,

sgx_ra context t context,

sgx_ec256 public t *g a // Little Endian

) ;

Note that the 4th parameter this function takes should be in little endian
format.

Requirements

Header sgx_ukey exchange.h

sgx_ecall_proc_msg2_trusted_t

Function pointer of proxy function generated from sgx_tkey
exchange.edl.

Syntax
typedef sgx status t (* sgx ecall proc msg2 trusted t) (

sgx_enclave id t eid,

int* retval,

sgx_ra context t context,

const sgx ra msg2 t *p msg2,

const sgx_ target info t *p ge target,
sgx_report t *p report,

Sgx_quote nonce_t *p nonce

) ;

Requirements

Header sgx_ukey exchange.h

sgx_ecall_get_msg3_trusted_t

Function pointer of proxy function generated from sgx tkey
exchange.edl.

Syntax
typedef sgx status t (* sgx ecall get msg3 trusted t) (

- 426 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_enclave id t eid,
int* retval,

sgx_ra context t context,
uint32 t quote size,
sgx_report t* ge report,
sgx_ra msg3_t *p msg3,
uint32 t msg3 size

) ;

Requirements

Header sgx_ukey exchange.h

sgx_platform_info_t

This opaque data structure indicates the platform information received from
Intel Attestation Server.

Syntax
#define SGX PLATFORM INFO SIZE 101

typedef struct platform info
{

uint8 t platform info[SGX PLATFORM INFO SIZE];
} sgx platform info t;

Members
platform_info
The platform information.

Requirements

Header sgx_quote.h

sgx_update_info_bit_t

Type for information of what components of Intel SGX need to be updated
and how to update them.

Syntax
typedef struct update info bit

{

int ucodeUpdate;

-427 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

int csmeFwUpdate;
int pswUpdate;
} sgx update info bit t;

Members

ucodeUpdate

Whether the ucode needs to be updated.
csmeFwUpdate

Whether the csme firmware needs to be updated.
pswUpdate

Whether the platform software needs to be updated.

Requirements

Header sgx_quote.h

sgx_dh_msg1_t

Type for MSG1 used in DH secure session establishment.
Syntax

typedef struct sgx dh msgl t

{

sgx_ec256 public t g a;
sgx_target info t target;
} sgx dh msgl t;

Members
g _a (Little Endian)

Public EC key of responder enclave of DH session establishment, based on the
NIST P-256 elliptic curve.

target

Report target info to be used by the peer enclave to generate the Intel® SGX
report in the message 2 of the DH secure session protocol.

Requirements

Header sgx_dh.h

- 428 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_dh_msg2_t

Type for MSG2 used in DH secure session establishment.
Syntax

typedef struct sgx dh msg2 t

{

sgx_ec256 public t g b;

sgx report t report;

uint8 t cmac[SGX DH MAC SIZE];
} sgx dh msg2 t;

Members
g b (Little Endian)

Public EC key of initiator enclave of DH session establishment, based on the
NIST P-256 elliptic curve.

report

Intel® SGX report of initiator enclave of DH session establishment. The first 32-
byte of the report_data field of the report is set to SHA256 hash of g_ aand g_
b, where g_ais the EC Public key of the responder enclave and g_b is the EC
public key of the initiator enclave. The second 32-byte of the report_data
field is set to all Os.

cmac[SGX_DH_MAC_SIZE]

AES-CMAC value of g_Db,report, 2-byte KDF-ID, and 0x00s using SMK as the
AES-CMAC key. SMK is derived as follows:

KDK= AES-CMAC (key0, LittleEndian (gab x-coordinate))
SMK = AES-CMAC (KDK, O0xO01]|"SMK'||0x00]||0x801]]0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

e acounter (0x01)

« alabel: the ASCIl representation of the string 'SMK' in Little Endian
format

« abitlength (0x80)

- 429 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Requirements

Header sgx_dh.h

sgx_dh_msg3_t

Type for MSG3 used in DH secure session establishment.
Syntax

typedef struct sgx dh msg3 t

{

uint8 t cmac[SGX DH MAC SIZE];
sgx_dh msg3 body t msg3 body;
} sgx _dh msg3 t;

Members
cmac[SGX_DH_MAC_SIZE]

CMAC value of message body of MSG3, using SMK as the AES-CMAC key. SMK
is derived as follows:

KDK= AES-CMAC (key0, LittleEndian (gab x-coordinate))
SMK = AES-CMAC (KDK, O0xO1]|"SMK’ ||0x00]|]0x80]]0x00)

The key0 used in the key extraction operation is 16 bytes of 0x00. The plain
text used in the AES-CMAC calculation of the KDK is the Diffie-Hellman shared
secret elliptic curve field element in Little Endian format.

The plain text used in the SMK calculation includes:

e acounter (0x01)
« alabel: the ASCIl representation of the string 'SMK' in Little Endian

format
« abit length (0x80)

msg3_body
Variable length message body of MSG3.

Requirements

Header sgx_dh.h

- 430 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_dh_msg3_body_t

Type for message body of the MSG3 structure used in DH secure session
establishment.

Syntax
typedef struct sgx dh msg3 body t
{

sgx_report t report;
uint32 t additional prop_ length;
uint8 t additional prop[0];

} sgx _dh msg3 body t;

Members
report

Intel® SGX report of responder enclave. The first 32-byte of the report_data
field of the report is set to SHA256 hash of g_b and g_a, where g_ais the EC
Public key of the responder enclave and g_b is the EC public key of the ini-
tiator enclave. The second 32-byte of the report_data field is set to all Os.

additional_prop_length
Length of additional property field in bytes.
additional_prop[0]

Variable length buffer holding additional data that the responder enclave may
provide.

Requirements

Header sgx_dh.h

sgx_dh_session_enclave_identity_t

Type for enclave identity of initiator or responder used in DH secure session
establishment.

Syntax

typedef struct sgx dh session enclave identity t

{

Sgx_Ccpu_svn_t cpu svn;
uint8 t reserved 1[32];
sgx_attributes t attributes;

-431 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_measurement t mr_ enclave;
uint8 t reserved 2[32];
sgx_measurement t mr signer;
uint8 t reserved 3[96];
sgx_prod id t isv_prod id;
sgx_1sv_svn_t 1isv_svn;
} sgx_dh session _enclave identity t;

Members

cpu_svn

Security version number of CPU.
reserved_1[32]

Reserved 32 bytes.

attributes

Intel SGX attributes of enclave.
mr_enclave

Measurement of enclave.
reserved_2[32]

Reserved 32 bytes.

mr_signer

Measurement of enclave signer.
reserved_3[96]

Reserved 96 bytes.

isv_prod_id (Little Endian)
Product ID of ISV enclave.
isv_svn (Little Endian)
Security version number of ISV enclave.

Requirements

Header sgx_dh.h

-432 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

sgx_dh_session_role_t

Type for role of establishing a DH secure session used in DH secure session
establishment.

Syntax

typedef enum sgx dh session role t

{

SGX DH SESSION INITIATOR,
SGX DH SESSION RESPONDER

} sgx dh session role t;

Members

SGX_DH_SESSION_INITIATOR

Initiator of a DH session establishment.
SGX_DH_SESSION_RESPONDER
Responder of a DH session establishment.

Requirements

Header sgx_dh.h

sgx_dh_session_t

Type for session used in DH secure session establishment.
Syntax

typedef struct sgx dh session t

{

uint8 t sgx dh session[SGX DH SESSION DATA SIZE];
} sgx_dh session_ t;

Members
sgx_dh_session
Data of DH session.

The array size of sgx_dh_session SGX_DH_SESSION_DATA_SIZE is defined as
200 bytes.

- 433 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Requirements

Header sgx_dh.h

sgx_device_status_t

Type for the status of Intel® SGX device after the dynamic enabling.
Syntax

typedef enum sgx device status t

{

SGX_ENABLED,
SGX_DISABLED REBOOT REQUIRED,
SGX_DISABLED LEGACY OS,
SGX_DISABLED,

SGX_DISABLED SCI_AVAILABLE,
SGX_DISABLED MANUAL ENABLE,
SGX_DISABLED HYPERV ENABLED,
SGX_DIABLED UNSUPPORTED CPU

} sgx _device status t;

Members

SGX_ENABLED

Intel SGX device is enabled.
SGX_DISABLED_REBOOT_REQUIRED

Intel SGX device is disabled and a reboot is required to enable it.
SGX_DISABLED_LEGACY_OS

The operating system is a legacy system and does not support enabling Intel
SGX device dynamically.

SGX_DISABLED
Intel SGX device is disabled.
SGX_DISABLED_SCI_AVAILABLE

Intel SGX device is disabled, but a Software Control Interface is available to
enable it dynamically.

SGX_DISABLED_MANUAL_ENABLE
Intel SGX device is disabled, but can be enabled manually in the BIOS setup.
SGX_DISABLED_HYPERV_ENABLED

-434 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

An unsupported version of Windows* 10 is detected with Hyper-V enabled.
SGX_DISABLED_UNSUPPORTED_CPU
Intel SGX is not supported by this CPU.

Requirements

Header sgx_capable.h

sgx_config_svn_t

16-bits value representing the enclave CONFIGSVN. This value is used in the
derivation of some keys.

Requirements

Header sgx_key.h

sgx_config_id_t

64-bytes value representing the enclave CONFIGID. This value is used in the
derivation of some keys.

Requirements

Header sgx_key.h

sgx_isvext_prod_id_t

16-bytes value representing the enclave Extended Product ID. This value is
used in the derivation of some keys.

Requirements

Header sgx_report.h

sgx_isvfamily_id_t

16-bytes value representing the enclave product Family ID. This value is used
in the derivation of some keys.

Requirements

Header sgx_report.h

sgx_kss_config_t

Structure of this type contains CONFIGSVN and CONFIGID values for a KSS
enabled enclave. You can specify different CONFIGSVN and CONFIGID values

- 435 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

for the enclave to have additional control options over the key derivation pro-
cess.

Syntax

typedef struct sgx kss config t {
sgx_config id t config id;
sgx_config svn_t config_svn;

} sgx kss config t;

Members

config_id

64-bytes value representing the enclave CONFIGID.

config_svn

16-bits value representing the enclave CONFIGSVN.

Requirements

Header sgx_urts.h

align_req_t

align req tisan offset-length pair used to describe the secrets within a
structure.

Syntax

typedef struct req data t {

size t offset;
size t len;

} req data t;

Requirements

Header sgx_secure align api.h

custom_alignment_aligned

custom alignment alignedisaclasstemplate used to align secrets that
are statically-defined, for example, on the stack.

Syntax

- 436 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

template<class T, std:size_t A, std:size_t... OLs>

class custom_alignment_aligned;

T is the class, structure, or type that needs alignment, for example, a structure
representing or containing a cryptographic key.

A is the desired, traditional alignment of T. Do not confuse it with the align-
ment needed to mitigate the vulnerability - the two are related, but different.

OLs is a variable-length list of offset-length pairs. Each pair describes a secret
within T. If T represents a single secret, there is only one pair, (0, sizeof(T)).

Requirements

Header sgx_secure align.h

Error Codes

Table 17 Error code

Value |Error Name Description

Ox0000|SGX_SUCCESS

0x0001|SGX_ERROR _ An unexpected error.
UNEXPECTED

0x0002|SGX_ERROR _ The parameter is incorrect.
INVALID _
PARAMETER

0Ox0003|SGX_ERROR_OUT _[There is not enough memory available to com-
OF _MEMORY plete this operation.

0x0004|SGX_ERROR _ The enclave is lost after power transition.
ENCLAVE_LOST

0x0005|SGX_ERROR _ The APl is invoked in incorrect order or state.
INVALID_STATE

0x0007|SGX_ERROR _ Incompatible versions of Windows* 10 OS and
HYPERV_ENABLED |Hyper-V* are detected. Disable Hyper-V on the

target system.

0x0008|SGX_ERROR _ The feature is not supported.
FEATURE_NOT _
SUPPORTED

-437 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

0x1001|SGX_ERROR_ The ECALL or OCALL function index is incorrect.
INVALID_
FUNCTION

O0x1003|SGX_ERROR_OUT _|The enclave is out of TCS.

OF_TCS

0x1006|SGX_ERROR _ The enclave has crashed.
ENCLAVE_
CRASHED
0x1007|SGX_ERROR_ ECALL is not allowed at this time. Possible reas-
ECALL_NOT _ ons:
ALLOWED
o ECALL is not public.
o ECALL is blocked by the dynamic entry
table.
o Anested ECALL is not allowed during
global initialization.
0x1008|SGX_ERROR_ OCALL is not allowed during exception handling.
OCALL_NOT_
ALLOWED
0x2000|SGX_ERROR _ The enclave contains an import table.
UNDEFINED _
SYMBOL
0x2001(SGX_ERROR _ The enclave image is incorrect.
INVALID_ENCLAVE
0x2002|SGX_ERROR_ The enclave ID is invalid.

INVALID_ENCLAVE _|
ID

0x2003[SGX_ERROR _ The signature is invalid.
INVALID _
SIGNATURE
0x2004|SGX_ERROR _ The enclave is signed as a product enclave and

NDEBUG_ENCLAVE

cannot be created as a debuggable enclave.

0x2005

SGX_ERROR_OUT _
OF_EPC

There is not enough EPC available to load the
enclave or one of the Architecture Enclaves
needed to complete the operation requested.

0x2006

SGX_ERROR_NO_
DEVICE

Cannot open the device.

0x2007

SGX_ERROR_
MEMORY_MAP_

Page mapping failed in the driver.

- 438 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

CONFLICT

0x2009

SGX_ERROR_
INVALID_
METADATA

The metadata is incorrect.

0x200C

SGX_ERROR_
DEVICE_BUSY

Device is busy.

0x200D

SGX_ERROR_
INVALID_VERSION

Metadata version is inconsistent between uRTS
and sgx_sign or the uRTS is incompatible with
the current platform.

MEMORY_LOCKED

O0x200E[SGX_ERROR _ The target enclave (32/64 bit or HS/Sim) mode
MODE_ is incompatible with the uRTS mode.
INCOMPATIBLE

0x200F [SGX_ERROR _ Cannot open the enclave file.

ENCLAVE_FILE_
ACCESS

0x2010|SGX_ERROR_ The MiscSelect or MiscMask settings are incor-
INVALID_MISC rect.

0x2012|SGX_ERROR_ Attempt to change system memory that should

not be modified.

SERVICE_TIMEOUT

0x3001|SGX_ERROR_MAC_|Report verification error.
MISMATCH

0x3002|SGX_ERROR _ The enclave is not authorized.
INVALID _
ATTRIBUTE

0x3003|SGX_ERROR_ The CPU SVN is beyond the CPU SVN value of
INVALID_CPUSVN [the platform.

0x3004|SGX_ERROR _ The ISV SVN is greater than the ISV SVN value of
INVALID_ISVSVN [the enclave.

0x3005|SGX_ERROR _ Unsupported key name value.
INVALID_KEYNAME

0x4001|SGX_ERROR_ AE service does not respond or the requested
SERVICE _ service is not supported.
UNAVAILABLE

0x4002|SGX_ERROR _ The request to AE service timed out.

0x4003

SGX_ERROR_AE_
INVALID_EPIDBLOB

Intel® EPID blob verification error.

0x4004

SGX_ERROR_

Enclave has no privilege to get a launch token.

- 439 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

SERVICE_INVALID_
PRIVILEDGE

0x4005

SGX_ERROR_EPID_
MEMBER _

The Intel® EPID group membership has been
revoked. The platform is not trusted. Updating

SESSION_INVALID

REVOKED the platform and repeating the operation will
not remedy the revocation.
0x4006|SGX_ERROR _ Intel® SGX requires update.
UPDATE_NEEDED
0x4007|SGX_ERROR _ Network connecting or proxy setting issue is
NETWORK _ encountered.
FAILURE
Ox4008|SGX_ERROR_AE_ [The session is invalid or ended by the server.

0x400a

SGX_ERROR_BUSY

The requested service is temporarily not avail-
able.

0x400c

SGX_ERROR_MC_

The Monotonic Counter does not exist or has

SERVICE_CLOSED

NOT_FOUND been invalidated.

0x400d|SGX_ERROR_MC_ [The caller does not have the access right to the
NO_ACCESS _ specified VMC.
RIGHT

0x400e|SGX_ERROR_MC_ |No monotonic counter is available.
USED_UP

0x400f [SGX_ERROR_MC_ [Monotonic counters reached quota limit.
OVER_QUOTA

0x4011|SGX_ERROR_KDF _ |[Key derivation function does not match during
MISMATCH key exchange.

0x4012|SGX_ERROR_ Intel® EPID Provisioning failed because the plat-
UNRECOGNIZED_ [form is not recognized by the back-end server.
PLATFORM

0x4013|SGX_ERROR_SM_ [The secure message service instance has been

closed.

0x4014

SGX_ERROR_SM_

The secure message service applet does not

SERVICE_ have an existing session.
UNAVAILABLE

0x4015|SGX_ERROR_SM_ [The secure message service instances ter-
SERVICE_ minated with an uncaught exception.
UNCAUGHT_
EXCEPTION

-440 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

INTERNAL_ERROR

0x4016|SGX_ERROR_SM_ [The response data of the service applet is too
SERVICE_ large.
RESPONSE _
OVERFLOW

0x4017|SGX_ERROR_SM_ [The secure message service got an internal
SERVICE_ error.

NOT_ENCRYPTED

0x5002|SGX_ERROR_NO_ [|You do not have privilege to perform the oper-
PRIVILEGE ation.
0x6001|SGX_ERROR_PCL_ ((Intel® SGX PCL) Trying to load an encrypted
ENCRYPTED enclave using the wrong API or with wrong para-
meters
0x6002|SGX_ERROR_PCL_ ((Intel®* SGX PCL) Trying to load an enclave that is

not encrypted using APl or parameters for
encrypted enclaves

0x7001

SGX_ERROR_FILE_
BAD_STATUS

The file is in a bad status. Run sgx clearerr
to try and fix it.

0x7002

SGX_ERROR_FILE_
NO_KEY_ID

The Key ID field is all zeros, cannot re-generate
the encryption key.

0x7003

SGX_ERROR_FILE_
NAME_MISMATCH

The current file name is different than the ori-
ginal file name (not allowed, substitution attack).

0x7004

SGX_ERROR_FILE_
NOT_SGX_FILE

The file is not an Intel® SGX file.

0x7005

SGX_ERROR_FILE_
CANT_OPEN_
RECOVERY_FILE

A recovery file cannot be opened, so the flush
operation cannot continue (only used when no
EXXX is returned).

0x7006

SGX_ERROR_FILE_
CANT_WRITE_
RECOVERY_FILE

A recovery file cannot be written, so the flush
operation cannot continue (only used when no
EXXX is returned).

0x7007

SGX_ERROR_FILE_
RECOVERY_
NEEDED

When opening the file, recovery is needed, but
the recovery process failed.

0x7008

SGX_ERROR_FILE_
FLUSH_FAILED

fflush operation (to the disk) failed (only used
when no EXXX is returned).

0x7009

SGX_ERROR_FILE_
CLOSE_FAILED

fclose operation (to the disk) failed (only used
when no EXXX is returned).

0x8001

SGX_ERROR_
UNSUPPORTED_

Platform quoting infrastructure does not support
the key.

441 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

ATT_KEY_ID

0x8002

SGX_ERROR_ATT_
KEY_
CERTIFICATION_
FAILURE

Failed to generate and certify the attestation
key.

Ox8003|SGX_ERROR_ATT_ [The platform quoting infrastructure does not
KEY_ have the attestation key available to generate a
UNINITIALIZED quote.

0x8004|SGX_ERROR_ The data returned by the sgx get quote
INVALID_ATT_KEY_|config () of the platform library is invalid.
CERT_DATA

0x8005(SGX_ERROR _ The PCK Cert for the platform is not available.
PLATFORM_CERT _

UNAVAILABLE

-442 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Container Support on Windows

Docker containers on Windows* are supported on Windows* Server 2019, Win-
dows* IOT Core 2019, and Windows* IOT Enterprise 2019. This document will
describe how to use Intel® SGX in Windows* Nanoserver containers on Win-
dows* Server 2019, but the concepts / instructions can be generalized for the
other host OSes and Docker containers.

Windows* Nano Server Installation

A quick set of powershell commands to set up your environment on Windows*
Server 2019 to support Docker containers are:

Install-Module -Name DockerMsftProvider -Repository
PSGallery -Force

Install-Package -Name docker -ProviderName
DockerMsftProvider

Restart-Computer -Force

A full description of the installation and configuration of the container envir-
onment is beyond the scope of this document. That information can be found
in

https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-
start/set-up-environment.

Once you have configured Docker, you can run a Windows* Nano Server con-
tainer by running the following command in powershell:

docker run -it --isolation=process
mcr.microsoft.com/windows/nanoserver:1809

Building a Windows* Nano Server Test Application

To build applications that can be launched in Windows* Nano Server, you

need to make sure they are OneCore compliant. Enclave projects are already
compatible with Windows* Nano Server, but a typical Windows* Console
Application is not. The Windows* Driver Kit (WDK) contains a project template
"Application for Windows Drivers" that has the appropriate settings. These set-
tings include generating code using /MT instead of /MD, as well as linking

- 443 -

https://docs.microsoft.com/en-us/virtualization/windowscontainers/quick-start/set-up-environment?tabs=Windows-Server

Intel® Software Guard Extensions Developer Reference for Windows* OS

against OneCore.lib and ucrt.lib, whileignoring kernel32.1ib,user-
32.1lib,and libucrt.1lib.

To set these manually, configure your application's project properties:
C/C++

Code Generation

Runtime Library: /MT for release, /MTd
for debug

Linker
General
Additional Library Directories:

$ (WindowsSDK LibraryPath)\$ (Plat-
formTarget) ;

$(VC LibraryPath VC x86 OneCore)
for 32bit or $(VC LibraryPath
VC x64 OneCore) for 64bit

[Debug] Input

Additional Dependencies:
OneCore.lib; ucrt[d].lib;

Ignore Specific Default Librar-
ies: kernel32.lib; user-
32.1ib;libucrt[d].lib;

The QuoteGenerationSample project is an example of a project configured to
be OneCore compliant.

Running the Test Application

If your test application is located in c: \sgx_test, you can mount this dir-
ectory into your container by executing:

docker run -it --isolation=process -v c:\sgx_
test:c:\sgx_test
mcr.microsoft.com/windows/nanoserver:1809

-444 -

https://github.com/intel/SGXDataCenterAttestationPrimitives/blob/master/SampleCode/QuoteGenerationSample/App/App.vcxproj

Intel® Software Guard Extensions Developer Reference for Windows* OS

Note that if the test application has any additional DLL dependencies, they
must also be mounted or copied into the container.

If your application requires "Flexible Launch Control", first make sure that the
Windows* Server 2019 host has opted in to support this feature and your con-
tainer must be launched with support for this device driver.

Enabling Flexible Launch Control support on the host
In order to enable this feature on the host, add a DWORD named SGX_Launch_
Config_Optin with value 1 to

HKEY LOCAL
MACHINE\SYSTEM\CurrentControlSet\Services\sgx lc
msr\Parameters

Windows* Nano Server with Flexible Launch Control support

In order to add the Flexible Launch Control device to the container, you must
pass the --device option, and pass the GUID for the SGX Launch Token Inter-
face:

——device="class/17eaf82e-e167-4763-b569-5b8273cef6el"

For example,

docker run -it --isolation=process --
device="class/l17eaf82e-el167-4763-b569-5b8273cef6el"
mcr.microsoft.com/windows/nanoserver:1809

In Windows*, using --device is only supported on containers that use process
isolation. Containers that use hyperv isolation do not support this option.

Putting it all together

If your application uses the Intel® SGX PSW as well as the
Intel® SGX DCAP libraries, you could run on the host something like:

docker run -it --isolation=process -v c:\sgx\psw:c:\sgx
psw -v c:\sgx\dcap:c:\sgx dcap -v c:\sgx\test:c:\sgx
test --device="class/17eaf82e-el67-4763-0b569-508273ce-
f6el" mcr.microsoft.com/windows/nanoserver:1809

- 445 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Where c:\sgx\psw is adirectory on the host OS that contains the
Intel® SGX PSW, c: \sgx\dcap contains the Intel® SGX DCAP binaries, and
c:\sgx\test contains the test collateral.

Once you are in the Windows* Nano Server shell, you can run:

:\>cd sgx_test

:\sgx_ test>mkdir c:\sgx runtime

:\sgx_test>copy c:\sgx psw\sgx*dll c:\sgx runtime

:\sgx_test>set PATH=%PATHS%;c:\sgx runtime;c:\sgx dcap

Q O O O O

:\sgx_test>.\App.exe

This step is optional: the default enclave load policy
is persistent:

set the enclave load policy as persistent:succeed!
Stepl: Call sgx _ge get target info:succeed!

Step2: Call create app report:succeed!

Step3: Call sgx_ge get quote size:succeed!

Step4: Call sgx ge get quote:succeed!cert key type = 0x3

Clean up the enclave load policy:succeed!

There are other ways to copy/mount the necessary DLLs into the container, as
well as setting the PATH enviroment variable. The steps above are merely one
example. In addition, if you are using Intel® SGX DCAP, you should check
whether your environment and application will need to use or will need to
NOT use the dcap_quoteprov.dll provided by the Intel® SGX PSW when set-
ting the PATH environment variable.

AESM Support for Containerized Client Applications

AESM Configuration

The traditional IPC mechanism between a client application and the AESM is
not allowed to cross container boundaries. In order to support an

IPC mechanism that is allowed to cross container boundaries, the AESM has
the ability to open a TCP/IP socket and service client requests via that socket.
The configuration for this service happens during AESM startup.

- 446 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

During startup, the AESM reads the IP address and port that it should attempt
to bind to. If the registry entry does not exist or it is unable to bind to that
address+port, the AESM will not be able to service requests via TCP/IP . If, for
example, you would like the AESM to bind to all its interfaces on a port dynam-
ically chosen by the OS, you would add the following registry entry:

reg add
HKLM\System\CurrentControlSet\Services\AESMService\State
\Sockets /v BIND ADDR /d "0.0.0.0:0"

If you want to configure the AESM to only listen on a specific interface, such as
the on associated with the IP address 10.1.2.3, and a particular port, for
example, 5678, then you would add:

reg add
HKLM\System\CurrentControlSet\Services\AESMService\State
\Sockets /v BIND ADDR /d "10.1.2.3:5678"

After restarting the AESM, the result of the bind operation is stored in ADDR
(REG_SZ) entry in the same key:

sc stop aesmservice
sc start aesmservice

reg query
HKLM\System\CurrentControlSet\Services\AESMService\State
\Sockets

HKEY LOCAL
MACHINE\System\CurrentControlSet\Services\AESMService\St
ate\Sockets

BIND ADDR REG S% 0.0.0.0:0
ADDR REG_SZ% 0.0.0.0:50123

You can confirm the AESM is listening on the port using netstat or any of the
other traditional tools.

NOTE
If your AESM is configured to listen on a particular address:port, please make
sure that your firewall will allow connections to this address:port pair from the
client address:port.

- 447 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Client Application Configuration

For the client you will need to indicate that instead of the traditional IPC on
the same host, you wish to have the client use TCP/IP socket IPC with the
AESM, possibly running in a different container You can do this by setting the
following environment variable for the client application:

o SGX_AESM_ADDR: A resolvable host name or IP address and port pair on

which the AESM is listening for new connections. For example,
set SGX AESM ADDR=127.0.0.1:12345

Setting this environment variable directs the client application to use TCP/IP
sockets for IPC with the AESM. If the client application is unable to connect to
the AESM via TCP/IP, the client application will not fall back and try to connect
via the other IPC mechanismes.

AESM Inside Windows* Nano Server

Another scenario users may be interested is running the AESM inside a con-
tainer. Once you are running inside a Windows* Nano Server with a copy of the
Intel® SGX PSW in c:\sgx_psw as described above, you can register the

AESM as a service, and then start it as follows:

host>docker run -it --isolation=process v c:\SGX
PSW:c:\SGX PSW -u ContainerAdministrator
mcr.microsoft.com/windows/nanoserver:1809

cd c:\sgx psw

reg add
HKLM\System\CurrentControlSet\Services\AESMService\State
\Sockets /v BIND ADDR /d "0.0.0.0:0"

reg add
HKLM\SYSTEM\CurrentControlSet\Services\AESMService /v
InitHelper /t REG DWORD /d 1

c:\sgx psw>aesm service.exe /service

c:\sgx_psw>sc start aesmservice

- 448 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

The docker run command is shown to explicitly demonstrate the need for
running as an administrator in the container, since administrator rights are
needed in order to register the Intel® SGX AESM service. You can verify the
AESM has started and obtain the necessary parameters for the client applic-
ation's configuration by executing the following commands inside the con-
tainer:

SC query aesmservice
ipconfig

reg query
HKLM\System\CurrentControlSet\Services\AESMService\State
\Sockets

Afterwards, you can then configure your client application's environment vari-
able as described in "Client Application Configuration."

- 449 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Security Issues Which May Require More Than Using the
Latest Intel SGX SDK

This section lists security issues where mitigation may require more than using
the latest Intel SGX SDK. The issues are listed in reverse chronological order.

Some of the issues are associated with the SW hardening needed attestation
response.

INTEL-SA-00657, INTEL-SA-00767 (Addressing Stale Data Read from
Legacy xAPIC)

This section describes changes introduced in version 2.16.101.710of the Intel
SGX SDK for Windows.

INTEL-SA-00657 describes an issue, named Stale Data Read from Legacy
xAPIC, that affects SGX. As explained here in the associated technical paper,
the associated technical paper, Intel has provided a microcode update (MCU)
to help mitigate the issue. However and as the paper explains, the best secur-
ity for some enclaves may also require enclave SW changes. In the future, Intel
expects to provide an additional MCU that will mitigate the issue such that
enclave SW changes to help mitigate the issue will no longer be needed. This
section describes:

1. changes in the Intel SGX SDK related to helping mitigate the issue.
2. changes that SGX developers may need to make to their enclaves, bey-
ond rebuilding their enclaves with the new SDK, to achieve better secur-

ity.

The SDK changes help ensure that enclave reads of memory outside the
enclave are 8-byte-aligned and a multiple of 8 bytes in size (henceforth, safe
reads). The new code does this through simple double-buffering where the
destination of a safe read is a temporary buffer (the double-buffer). Then, this
temporary buffer serves as the source of the original read. For example, sup-
pose an enclave needs to read 100 bytes of memory outside the enclave, start-
ing at address Ox10000001. One safe way to do this is for the enclave to read
104 (=8*13) bytes in multiples of 8 bytes, starting at address 0x10000000, to
a temporary buffer inside the enclave. Then, copy 100 bytes starting at the
second byte (offset 1) of the temporary buffer to the original, non-temporary
destination buffer. (Another safe way would recognize that the 88 bytes start-
ing at 0x10000008 do not need to pass through a temporary buffer.)

- 450 -

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/stale-data-read-from-xapic.html

Intel® Software Guard Extensions Developer Reference for Windows* OS

The new SDK includes an updated Edger8r tool that generates code that does
safe reads of memory outside the enclave. The updated SDK also has updated
memcpy and memcpy s functions. The updated versions check whether the
source and/or destination buffers are outside the enclave and operate appro-
priately based on the results of these checks. (Checking the destination buffer
is associated with the mitigation for INTEL-SA-00615.) The updated SDK also
introduces amemcpy nochecks function that doesn't check where the buf-
fers are.memcpy nochecks can be used in cases where it's known that
source and destination buffers are both inside the enclave.

For enclaves that read memory outside the enclave using code that isn't asso-
ciated with ECALLs or OCALLs and for enclaves that use the EDL [user
check] attribute or that use nested pointers, the fact that the new Edger8r
generates code with mitigations doesn'’t help. In these cases, SGX developers
will still get INTEL-SA-00657 mitigations if they use memcpy or memcpy s to
do the reads. Otherwise, developers of code like this may need to change
their code to either mimic the behavior in the updated memcpy functions or
convert assignment statements that cause reads of memory outside the
enclave tomemcpy ormemcpy s calls.

On affected processors, mitigation of these issues requires either

1. Intel microcode released February 2023
2. Disabling Hyper-Threading (if applicable)

Or

1. Intel microcode released August 2022
2. Disabling Hyper-Threading (if applicable)
3. SW mitigations described above

SW Hardening

If the August 2022 microcode is used, then affected processors will get the
SW hardening needed attestation response.

INTEL-SA-00615 (Mitigations for Processor MMIO Stale Data Vul-
nerabilities)

INTEL-SA-00615 describes four vulnerabilities, each with their own CVE.
These four vulnerabilities are collectively known as Processor MMIO Stale Data
vulnerabilities. The four CVEs are CVE-2022-21123,CVE-2022-21125, CVE-
2022-21127 and CVE-2022-21166. CVE-2022-21127 does not require SW

-451 -

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00657.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://nvd.nist.gov/vuln/detail/CVE-2022-21123
https://nvd.nist.gov/vuln/detail/CVE-2022-21125
https://nvd.nist.gov/vuln/detail/CVE-2022-21127
https://nvd.nist.gov/vuln/detail/CVE-2022-21166
https://nvd.nist.gov/vuln/detail/CVE-2022-21127

Intel® Software Guard Extensions Developer Reference for Windows* OS

mitigations for SGX; the latest processor microcode alone is sufficient. The
other CVEs require both processor microcode and SW to mitigate.

Because the Intel SGX security model does not trust the OS, a malicious OS
could map MMIO memory into the untrusted memory space of an application
that uses one or more Intel SGX enclaves. This could include the region of
untrusted memory used for parameter passing to/from ECALLs and OCALLs, or
any external buffers that an enclave might use to communicate with its applic-
ation. If the malicious OS did such a mapping, then when the enclave wrote to
this memory, it could propagate the stale data in its fill buffers into the uncore,
where it could later be extracted by malicious software.

The mitigations below assume that Intel HT Technology is disabled to ensure
that once the fill buffers are overwritten, a sibling thread cannot repopulate
them. The necessary mitigation depends on how the enclave is accessing the
non-enclave memory regions. See the Processor MMIO Stale Data vul-
nerabilities technical paper for more information.

Beginning with version 2.16.0.3, Intel has updated the Intel SGX SDK for Win-
dows and the Edger8r tool included in the SDK to help prevent fill buffer data
exposure through the code generated by the Edger8r tool. Similarly, the Intel
SGX SDK now includes updates that will help prevent fill buffer data exposure
through the code used by enclaves that use the switchless mode supported
by the Intel SDK.

For enclaves that write to memory outside the enclave using code that isn't
associated with ECALLs or OCALLs and for enclaves that use the EDL [user
check] attribute or that use nested pointers, SGX developers must add mit-
igations to their enclave source code to help prevent fill buffer data exposure.
In order to mitigate, all writes to untrusted memory (that is, memory outside
the enclave) must

1. either be preceded by the VERW instruction (with memory, not register,
operand) and followed by the MFENCE; LFENCE instruction sequence
or

2. must be in multiples of 8 bytes, aligned to an 8-byte boundary.

Specifically, for narrow (not a multiple of 8 bytes) or unaligned enclave writes
to untrusted memory, the recommended mitigation is, for the narrow, one-
byte case:

; rdi contains the write address outside the
enclave

-452 -

https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html

Intel® Software Guard Extensions Developer Reference for Windows* OS

SUBQ $8, S%rsp ; assume stack exists and at least
8 bytes of stack available

MOVW %ds, (%rsp)
VERW (%rsp)

MOVB %al, (%rdi) ; narrow write to memory out-
side the enclave

MFENCE
LFENCE

ADDQ $8, S%rsp

Note that the VERW instruction updates the ZF bit in the EFLAGS register, so
exercise caution when using the above sequence in-line in existing code. Note
also that the latest processor microcode has additions to VERW that are neces-
sary for VERW to clear the fill buffers in the above sequence.

Mitigating a narrow or unaligned write to memory outside the enclave
requires the instruction that does the write to be a single memory operand
instruction; MOVS or REP MOVS, for example, cannot be used (unless the asso-
ciated writes are all multiples of eight bytes and aligned). Read-modify-write
instructions like ADD or even CMPXCHG can be treated like single memory
operand write instructions, that is, add the mitigation sequence if the memory
operand is narrow or unaligned. For example, for CMPXCHG with a 32-bit
memory operand:

; rdi contains the address outside the enclave
; ecx contains the “new” wvalue

; eax contains the “compare” wvalue

SUBQ $8, S%rsp ; assume stack exists and at least
8 bytes of stack available

MOVW %ds, (%rsp)

VERW (%rsp)

LOCK CMPXCHGL %ecx, (%$rdi)
MEFENCE

LFENCE

-453 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

ADDQ $8, S%rsp

The latest Intel SGX SDK includes new utility functions to facilitate SGX
developers mitigating their code: memcpy verw,memcpy verw s,mem-
move_verw,memmove_verw_s,memset_verwandH@mset_verw_s.
These functions include width and alignment checks and will use the mit-
igation sequence as needed based on the results of these checks. They do not
check whether the destination (write) address is outside the enclave; this is
the responsibility of the calling code.

SGX developers should increment the ISVSVN values of their enclaves with
the mitigations for Processor MMIO Stale Data Vulnerabilities (INTEL-SA-
00615).

SW Hardening
Affected processors will get the SW hardening needed attestation response.

Addressing MXCSR Configuration Dependent Timing

Data Operand Independent Timing ISA Guidance describes MXCSR Con-
figuration Dependent Timing (MCDT) where SW is needed to help ensure
instruction timing that is independent of the values of the instruction’s data
operands.

If the intended operation of an Intel SGX enclave, for the lifetime of the
enclave, is achievable with MXCSR=0x1FBF, then any loads of MXCSR (via
LDMXCSR, XRSTOR, etc.) should be of Ox1FBF. Enclaves that don't use SSE*
floating point instructions fall into this category. There should be an LFENCE
between any load of MXCSR (even of Ox1FBF) and subsequent use of any
affected instruction (see Data Operand Independent Timing ISA Guidance).

If an enclave is compatible with MXCSR=0x1FBF and uses any of the affected
instructions, then the beginning of each enclave ECALL should set MXCSR to
Ox1FBF and then execute an LFENCE instruction. The Intel SGX SDK has been
changed to do this alleviating the need for SGX developers using the Intel
SGX SDK to do so.

If the intended operation of an Intel SGX enclave is not achievable with MXCSR-
R=0x1FBF, then the following mitigation sequence should be used:

; at this point, MXCSR != 0x1FBF
STMXCSR save val

LDMXCSR value Ox1fbf

- 454 -

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00615.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/data-operand-independent-timing-isa-guidance.html

Intel® Software Guard Extensions Developer Reference for Windows* OS

LFENCE

; Constant-time code using instructions affected
by MCDT

LFENCE

LDMXCSR save val

SW Hardening

This issue is not associated with the SW hardening needed attestation
response.

INTEL-SA-00334 (Enable CVE-2020-0551 Mitigation)

The Intel® SGX SDK facilitates mitigation of CVE-2020-0551, aka LVI (Load
Value Injection). The Intel® SGX SDK supports two mitigation levels. One level
addresses all instructions vulnerable to LVI. This level is called CVE-2020-
0551-Load (Load, for short). The second mitigation level addresses vulnerable
control flow instructions only and is called CVE-2020-0551-CF (CF, for short).

For more information on LVI, see CVE-2020-0551 and Intel's LVI tech paper.

Mitigation enabled Trust Libraries

The Intel® SGX SDK includes three sets of trusted libraries: Unmitigated, Load
and CF.

Mitigation Level Path

Unmitigated [Intel SGX SDK Install Path]
bin\x64\Release

Load [Intel SGX SDK Install Path]bin\x64\CVE-
2020-0551-Load-Release

CF [Intel SGX SDK Install Path]lbin\x64\CVE-
2020-0551-CF-Release

As stated above, the Intel® SGX SDK facilitates mitigation of CVE-2020-0551.
To take full advantage of it, you need the following tools.

Required tools:

« Visual Studio v15.9.21 or higher (Visual Studio v15.x.y := Visual Studio
2017).

o Sgx-asm-pp.py. This is a custom tool that is a part of the Intel® SGX SDK.
This tool helps mitigate handwritten assembly code.

Required options:

- 455 -

https://nvd.nist.gov/vuln/detail/CVE-2020-0551
https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/overview.html

Intel® Software Guard Extensions Developer Reference for Windows* OS

Load mitigation level |CF mitigation level |No LVI mit-
igation
Visual Studio /Qspectre-load /Qspectre-load-cf (neither)
15.9.21 or later
Sgx-asm-pp.py --MITIGATION-CVE- --MITIGATION-CVE- —-MITIGATION-
2020-0551=LOAD 2020-0551=CF CVE-2020-
0551=NONE or
use
NASM/MASM
directly.

Sgx-asm-pp.py has another required option, -—assembler. This option spe-
cifies the assembler used for the assembly source file. Valid arguments for —-
assembler are 'nasm'and 'ml64' (without the quotes).

NOTE:
To make sure the Binutils above are utilized in the mitigation build, you need
to ensure the Binutils tools can be found before the system Binutils. The
recommended action is to download the Binutils tools, copy themto /us-
r/local/bin,and make sure they have execute permission. For some OSs,
setting /usr/local/bin does not work: for example, SUSE Linux Enterprise
Server*. You can utilize the gcc -B option to specify the Binutils path.

Create CVE-2020-0551 Mitigation enabled trusted (enclave) project

You can use the Intel® SGX Visual Studio Wizard to create CVE-2020-0551
mitigation enabled new projects.

Follow Using Microsoft* Visual Studio* Intel® Software Guard Extensions Wiz-
ard to create a CVE-2020-0551 mitigation enabled new project.

After the new trusted project is created, four new CVE-2020-0551 mitigation
related configurations will be found.

e CVE-2020-0551-Load-Release

e CVE-2020-0551-Load-Prerelease
e CVE-2020-0551-CF-Release

e CVE-2020-0551-CF-Prerelease

See Mitigation Configuration Introduction for detailed information on these
configurations.

NOTE:

- 456 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

These four configurations are only supported on x64 platform.

Enable Mitigation for existing trusted project

User can use Intel® SGX Visual Studio Plug-In to add CVE-2020-0551 mit-
igation enabled configurations into existing trusted projects.

Follow Using Microsoft* Visual Studio* Intel® Software Guard Extensions Add-
in to add these configurations.

After that, four new CVE-2020-0551 mitigation related configurations will be
added.

e CVE-2020-0551-Load-Release

e CVE-2020-0551-Load-Prerelease
e CVE-2020-0551-CF-Release

e CVE-2020-0551-CF-Prerelease

See Mitigation Configuration Introduction for detailed information on these
configurations.

NOTE:
These four configurations are only supported on x64 platform.

Mitigation Configuration Introduction
CVE-2020-0551 Mitigation includes the following four configurations.

e CVE-2020-0551-Load-Release

e CVE-2020-0551-Load-Prerelease
e CVE-2020-0551-CF-Release

e CVE-2020-0551-CF-Prerelease

CVE-2020-0551-Load-Release

« Project is built with Release mode and Load level mitigation is enabled.
o AllC/C++ files will be built with /Q0spectre-1oad option.

CVE-2020-0551-Load-Prerelease

« Project is built with Prerelease mode and Load level mitigation is
enabled.
o All C/C++ files will be built with /Qspectre-1load option.

CVE-2020-0551-CF-Release

-457 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

« Project is built with Release mode and Control Flow level mitigation is
enabled.
o All C/C++ files will be built with /Qspectre-1oad-cf option.

CVE-2020-0551-CF-Prerelease

o Project is built with Prerelease mode and Control Flow level mitigation is
enabled.
o All C/C++ files will be built with /Qspectre-1load-cf option.

In each configuration, each .asm file's build command will be changed accord-
ing toit's Properties->General->Item Type type:

o Ifa.asmfile'stypeisCustom Build Tool and it's built by ml64.exe.
The file's Properties->Custom Build Tool->Command Line

will be switched to:

python "$ (SGXSDKInstallPath)\scripts\sgx—asm-pp.py"
—-—-assembler=ml64 --MITIGATION-CVE-2020-0551=
[LOAD|CF] <ml64 command line options>

o Ifa.asmfile'stypeisCustom Build Tool and it's built by nasm.exe.
The file's Properties->Custom Build Tool->Command Line

will be switched to:

python "$(SGXSDKInstallPath)\scripts\sgx-asm-pp.py"
-—assembler=nasm --MITIGATION-CVE-2020-0551=
[LOAD|CF] <nasm command line options>

o Ifa.asmfile'stypeisMicrosoft Macro Assembler. The trusted pro-
ject's Properties->Build Dependencies->Build Cus-

- 458 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

tomizations. . will be switched to Intel® SGX special masm script.

Visual C++ Build Custemization Files ? >

Available Build Customization Files:

Mame Path

[] ImageContentTask(targets, .pr... S(VCTargetsPath)\BuildCustomizations\imageContentTask.targets
] lci targets, .props] S(VCTargetsPath)\BuildCustomizations'lc.targets

] rmarmasmi.targets, .props) S(VCTargetsPath)\BuildCustomizations\marmasm.targets

] rasmi.targets, .props) S(VCTargetsPath)\BuildCustomizations\masm.targets

[] MeshCententTask(.ta rgets, .pro.. 5(VCTargetsPath)\BuildCustomizations\MeshContent Task.targets
[] ShaderGraphContentTask(targ... S(VCTargetsPath)\BuildCustomizations\ShaderGraphContentTask.ta
S(VSINSTALLDIR commonT\ide\extensions\rziyzdng.cwlW5_Buildd

masmi.targets, .props)

Find Existing... Refresh List Cancel

SW Hardening
Affected processors will get the SW hardening needed attestation response.

INTEL-SA-00219

On some processors, mitigation of this issue requires disabling Intel integrated
graphics. As an alternative, Intel SGX developers can follow the guidance in
INTEL-SA-00219 SGX SW Guidance

SW Hardening

This issue is not associated with the SW hardening needed attestation
response.

INTEL-SA-00088 (includes Spectre v1)

One approach for mitigating Spectre v1 in SGX enclaves is described in
INTEL-SA-00088 (Spectre v1) SGX SW Guidance.

- 459 -

https://software.intel.com/content/www/us/en/develop/download/intel-sgx-sdk-developer-guidance-intel-sa-00219.html
https://software.intel.com/content/www/us/en/develop/download/intel-software-guard-extensions-sgx-sw-development-guidance-for-potential-bounds-check.html

Intel® Software Guard Extensions Developer Reference for Windows* OS

SW Hardening

This issue is not associated with the SW hardening needed attestation
response.

- 460 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Appendix

This topic provides the following reference information:

e Unsupported MSVC* Options for Enclaves

o Unsupported Intrinsics

o Unsupported C Standard Functions

o Unsupported C++ Standard Classes and Functions
o Unsupported C and C++ Keywords

e C11 Support on Windows* Operating System

e C++11 Support on Windows* Operating System

Unsupported MSVC* Options for Enclaves
The following MSVC* compiler options are not supported to build enclaves:

Table 18 Unsupported MSVC Compiler Options

Option Description Remark
/clr Enables applications and
components to use fea-
tures of the common lan-
guage runtime.

/MD Selects run-time library. |Linking of DLL's within enclave not
allowed. Instead, use Intel® SGX

/MDd . .
trusted libraries.
/MT
/MTd
/EHa Exception handling C++ exceptions are supported
model that catches both [inside an enclave, but SEH is not
asynchronous (struc- supported.
tured) and synchronous
(C++) exceptions.
/fp Specify the floating-point beha{Not supported in the Intel® SGX version
vior. of the Intel® numeric library.
/Qimprecise |Removes fwait com- Not supported in the Intel® SGX
fwaits mands inside try blocks |version of the Intel numeric lib-
rary.
/Qpar Enables the compiler's auto-

parallelizer feature to auto-
matically parallelize loopsin
the code.

/Qpar-report

- 461 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

/Fx Produces a copy of each
source file with injected
code merged into the
source.

/GZ Performs the same oper-
ations as the /RTC (Run-
Time Error Checks)
option.

/RTC Used to enable and dis-
able the run-time error
checks feature, in con-
junction with the
runtime_checks pragma.

/openmp Causes the compilerto |Microsoft* OpenMP* library needs
process #pragma omp. |[to be linked, which is not self-con-
tained.
/LN Specifies that an This option is related to common

assembly manifest should |language runtime (/clr) option. As
not be inserted into the |Intel® SGX does not support the

output file. /clr option, this option will not be
supported.

/analyze Enable code analysis.

/hotpatch Create Hotpatchable Enclave code cannot be changed
Image. after it has been loaded.

/QIPF B Causes compiler not to

JOIPF C generate the cor-

- responding instructions.
/QIPF fr32

/QIPF noPIC

/QIPF
restrict pla
bels

Unsupported Intrinsics

The majority of the intrinsics are valid within an enclave. The Microsoft stand-
ard instrinsic header file <intrin.h> can be included. However, not all the
intrinsics that are defined are valid within an enclave. All math and advanced
instruction set intrinsics can be used within an enclave. The intrinsics which

- 462 -

http://msdn.microsoft.com/en-us/library/1w45z383(v=VS.90).aspx

Intel® Software Guard Extensions Developer Reference for Windows* OS

are NOT valid within an enclave are consistent with instructions that are not

supported within an enclave. They generally fall into the following categories:

o 1/O related.

« Instructions requiring ring O privilege or could change privilege level.
« Operating system or system related functions.
« Intrinsics which are considered non-secure and have secure alternatives.

NOTE

The Intel® SGX SDK has stub implementations, sgx_intrin.h for the intrins-
ics that are not valid within an enclave. These stubs will cause a compiler warn-
ing when an unsupported instrinsic is used.

The following intrinsics should not be used within an enclave:

Table 19 Unsupported MSVC Compiler Intrinsics

Not Supported: FS/GS related

__addgsbyte | _addgsword __addgsdword | _addgsqword
__incgsbyte | _incgsword __incgsdword |__incgsqword
__writegsbyte | _writegsword __writegsdword | _writegsqword
__addfsbyte | _addfsword _addfsdword

__incfsbyte | _incfsword __incfsdword

__writefsbyte | writefsword __writefsdword | writefsqword
Not Supported: Interrupt/Debug related

_enable l_disable |__halt I__inth

Not Supported: 1/0 related

_inp, inp | inpd, inpd _inpw, inpw

_out, out | outp, outd _outw, outw

__inbyte | _inword __indword

__outbyte | _outword __outdword

__inbytestring |_inwordstring __indwordstring

__outbytestring

| _outwordstring

__outdwordstring

Not Supported: VMX related

__vmx_off

| _vmx_on

__vmx_vmclear

|__vmx_vmlaunch

__vmx_vmptrld

| _vmx_vmptrst

__vmx_vmread

|__svm_vmresume

__vmx_wmwrite

| _nvreg_save_fence

__nvreg restore_
fence

__svm_clgi

|_svm_invlpga

__svm_skinit

|__svm_stgi

__svm_vmload

| _svm_vmrun

__svm_vmsave

Not Supported: Architectural State related (many require ring O priv-

- 463 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

ilege)

__rdtsc | __rdtscp __readpmc

__readcrO | _readcr2 _readcr3 | _readcr4
__readcr8 | _readdr __writedr |_invpcid
__writecrO | _writecr3 | writecr4 |__writecr8
__readeflags | _writeeflags _setjmp |_setjmpex
__readmsr | _writemsr _lidt | sidt
__getcallerseflags | _segmentlimit __wbinvd |__invlpg

dress

_AddressOfReturnAd-

| ReturnAddress

Not Supported: Non-secure (use secure alternative)

_strset strcat strcpy
_wcsset wcscat wcscpy
NOTE:

Even though the CPUID instruction is illegal inside enclaves, the intrinsics
cpuidand cpuidex are supported because they are replaced with calls
to functions sgx cpuidand sgx cpuidex.

Unsupported C Standard Functions

You cannot use the following Standard C functions within an enclave; oth-
erwise, the compilation would fail.

Table 20 Unsupported C Standard Functions

plex_l,

imaginary, _ima-
ginary_|

Header Header (Unsupported definition
file file in
Intel® |Macros/Types Functions
SGX?
complex.h Yes complex, com- cacos(), cacosf(), cacosl(), casin(), casinf(),

casinl(), catan(), catanf(), catanl(), ccos(),
ccosf(), ccosl(), csin(), csinf(), csinl(), ctan(),
ctanf(), ctanl(), cacosh(), cacoshf{(), cacoshl(),
casinh(), casinhf(), casinhl(), catanh(),
catanhf(), catanhl(), ccosh(), ccoshf(), ccoshl
(), csinh(), csinhf(), csinhl(), ctanh(), ctanhf(),
ctanhl(), cexp(), cexpf(), cexpl(), clog(), clogf
(), clogl(), cabs(), cabsf{(), cabsl(), cpow(),
cpowf(), cpowl(), csqrt(), csqrtf(), csqrtl(),
carg(), cargf(), cargl(), cimag(), cimagf{(),
cimagl(), conj(), conijf(), conijl(), cproj(), cprojf

- 464 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

(), cprojl(), creal(), crealf(), creall()
inttypes.h ([Yes SCNdN, SCNiN, |wcstoimax (), wcstoumax ()
SCNoN, SCNuN,
SCNxN,
SCNALEASTN,
SCNiLEASTN,
SCNoLEASTN,
SCNuLEASTN,
SCNxLEASTN,
SCNJFASTN,
SCNiFASTN,
SCNoFASTN,
SCNuFASTN,
SCNxFASTN,
SCNdMAX,
SCNiMAX,
SCNoMAX,
SCNuMAX,
SCNxMAX,
SCNdPTR,
SCNiPTR,
SCNoPTR,
SCNuPTR,
SCNxPTR

locale.h No LC ALL, LC setlocale (), localeconv ()
COLLATE, LC
CTYPE, LC_
MONETARY, LC
NUMERIC, LC_
TIME, struct

lconv

signal.h No sig atomic t, |signal(), raise()
SIG DFL, SIG
ERR, SIG IGN,
STGABRT,
SIGFPE,
SIGILL,
SIGINT,
SIGSEGV,
SIGTERM,

- 465 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

stdatomic.h|Yes ATOMIC <TYPE> |kill dependency (),
LOCK_ FREE, atomic fetch and(),
atomic_<data- |atomic fetch and explicit
type> (), atomic thread fence
(), atomic signal fence()
stdio.h Yes FILE, fpos t, |remove(), rename(), tmp-
IOFBF, file(), tmpnam(), fclose

IOLBF, IONBF, |(), fflush(), fopen(),
FILENAME MAX, |fopen s (), freopen(),
FOPEN MAX, L |freopen s(), setbuf(),
tmpnam, SEEK |[setvbuf (), fprintf(),
CUR, SEEK END, |fprintf s(), fscanf(),
SEEK SET, TMP_ |fscanf s (), printf(),
MAX, stderr, scanf (), scan_s(),

stdin, stdout, |[snprintf s (), sprintf (),
sprintf s (), sscanf(),
sscanf s (), vfprintf (),
viprintf s (), vfscanf(),
viscanf s (), vprintf (),
vprintf s (), vscanf(),
vscanf s (), vsnprintf s
(), vsprintf (), vsprintf
s(), vsscanf (), vsscanf s
(), fgetc(), fgets(),
fputc (), fputs(), getc(),
getchar (), gets(), gets_ s
(), putc(), putchar(),
puts (), ungetc (), fread
(), fwrite(), fgetpos(),
fseek (), fsetpos (), ftell
(), rewind(), clearerr(),
feof (), ferror(), perror
()

stdlib.h Yes rand (), srand(), atexit
(), exit (), _Exit(),
quick exit (), at quick
exit (), getenv (), getenv
s(), system(), bsearch s
(), gsort s (), wctomb s
(), wcstombs s ()

- 466 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

string.h Yes strcpy (), strcat(),
strstr()*, strerror s (),
strerrorlen s(), strlen_ s

()

threads.h |No thrd t, thrd [|thrd create(), thrd equal
success, thrd ((), thrd current(), thrd
timeout, thrd |[sleep(), thrd yield(),
busy, thrd thrd exit (), thrd detach
nomem, thrd (), thrd join(), mtx init
error, thrd (), mtx lock(), mtx timed-

start t, mtx [lock(), mtx trylock(),
t, mtx plain mtx unlock (), mxm destroy

mtx recursive, (), call once(), cnd init
mtx timed, (), cnd signal (), cnd
cnd t, tss t, |broadcast(), cnd wait(),
TSS DTOR cnd timedwait (), cnd des-
ITERATIONS, troy(), tss create(),
tss dtor t tss get(), tss set(),
tss delete()
time.h Yes timespec clock (), mktime (), time

(), asctime s(), ctime(),
ctime s (), gmtime (),
gtime s (), localtime(),
localtime s ()

uchar.h Yes _STDC_UTF 16 |mbrtoclé6 ()

, __STDC_UTF_

32

clortomb ()
mbrtoc32 ()

c32rtomb ()

wchar.h Yes fwprintf (), fwscanf (),
swscanf (), vfwprintf (),
vifwscanf (), vswscanf ()
vwprintf ()

wprintf (), wscanf (),
fgetwc (), fgetws(),
fputwec (), fputws (), fwide
(), getwc (), getwchar(),
putwc (), putwchar (),
ungetwc (), wcstod(),

’

, vwscanf (),

- 467 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

wcstof (), wcstold(),

wcstol (),
wcstoul (),

wcstoll (),
wcstoull (),

wcscpy (), wmemcpy s (),
wmemmove s (), wcscat ()

wcsnlen s (),
wcrtomb s (),

wcsftime (),

mbsrtowcs s

(), wcsrtombs s ()

wctype.h |Yes

iswalnum(),

iswblank (),

iswdigit (),

()
()
iswlower (),
iswpunct (),
iswupper (),

iswalpha
iswcntrl
iswgraph
iswprint
iswspace(),
iswxdigit (),

wctype (), towlower(),

towupper (),

towctrans (),

wctrans ()

(*) The trusted standard C library does not support char strstr (const
char*, const char*).The trusted standard C library supports the variant
const char* strstr (const char*, const char*).

In addition to the ‘C’ standard memset () function, the trusted ‘C’ library
(sgx_tstdc) also supportsmemset s (). The following is a note on the
recommended use of memset () versusmemset s ().

NOTE

Trusted C library is enhanced to avoid format string attacks. Any attempts to
use %n in printf-family functions such as snprintf will result in a run-time
error.

It is appropriate to use memset () toinitialize buffers and clear buffers that
do not contain secret data. If the purpose is to clear a buffer that contained
secret data before deletion of the that buffer, you should not use the memset
() function and should use the memset s () function instead. The problem
with using memset () in this scenario is that the compiler can optimize out
the write to memory to clear the buffer so that it will not be performed (the
compiler does this since it recognizes the subsequent deletion of the buffer).
The use of memset s () guarantees the compiler will not optimize away the
write to memory and thus ensuring the secret data is cleared. However, it is

- 468 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

not recommended that memset s () should always be used in place of mem-
set () since the implementation of memset s () is not performance optim-

ized.

Unsupported C++ Standard Classes and Functions

The following table lists unsupported C++11 classes and functions inside the

enclave.

Table 21 Utilities library

Header File |[Support|{Unsupported Classes
cstdlib Partial
csignal No
csetjmp No
cstdarg Yes
typeinfo Partial
typeindex [Yes
type_traits |Yes
bitset Yes
functional [Yes
utility Yes
ctime Partial
chrono No
cstddef Yes
initializer_list|Yes
tuple Yes

Table 22 Dynamic memory management

Header File SupportUnsupported Classes
memory Yes
new Partial

scoped_allocator|Yes

Table 23 Numeric limits

Header File

SupportUnsupported Classes

cfloat

Yes

- 469 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

cinttypes [Partial
climits Yes
cstdint Partial
limits Yes

Table 24 Error handling

Header File [SupportlUnsupported Classes
cassert Yes
cerrno Yes
exception |Partial nested exception
stdexcept ([Yes

system_error|Yes

Table 25 Strings library

Header File[SupportlUnsupported Classes
cctype Partial

cstring Partial

cuchar No

cwchar Partial

cwctype Partial

string Yes

Table 26 Containers library

Header File Support|Unsupported Classes
array Yes
dequeue Yes
forward_list Yes
list Yes
map Yes
queue Yes
set Yes
stack Yes
unordered_map|Yes
unordered_set [Yes
vector Yes

Table 27 Algorithms library

-470 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header File

Support

Unsupported Classes

algorithm

Partial

Table 28 Ite

rators library

Header File

Support

Unsupported Classes

iterator

Yes

Table 29 Nu

merics library

Header File[SupportlUnsupported Classes
cfenv No

cmath Partial

complex ([Yes

numeric Yes

random No

ratio Yes

valarray Yes

Table 30 Input/Output library

Header File[SupportlUnsupported Classes
cstdio Partial
fstream No
iomanip No

ios No
iosfwd No
iostream No
istream No
ostream No
sstream No
streambuf |No
strstream |No

Table 31 Localization library

Header File[SupportlUnsupported Classes
clocale No
codecvt No
locale No

Table 32 Regular expressions library

-471 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Header File[SupportlUnsupported Classes

regex No

Table 33 Atomic operations library

Header File[SupportlUnsupported Classes

atomic Yes

Table 34 Thread library

Header File [SupportiUnsupported Classes

condition_ |Partial

variable

future No

mutex Partial |[timed mutex, recursive timed mutex
thread No

Table 35 C compatibility headers

Header |Support{Unsupported Classes
File

ccomplex|Yes

implementation

ciso646 |Yes This header file is empty in a conforming

cstdalign |Yes

cstdbool [Yes

ctgmath (Yes

Unsupported C and C++ Keywords
The following keywords are not supported in an enclave:

Table 36 Unsupported C and C++ Keywords

Category Unsupported Keywords

Structured| try, _ except, finally, _ leave

Exception

Handling

Managed _abstract, box, sealed, value, del-

Extension |egate, @ gc, nogc, _ property, try cast,
pin

-472 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

Common Lanf- identifier, value class, delegate, enum

guage class*, typeid, enum struct*, generic, event,

Runtime finally, initonly, ‘for each, in’, ref
struct, friend as, gcnew, safecast, interface
class, interface struct, ref class, interior
ptr, literal, wvalue struct, property

Timing and| event, hook, unhook, raise, event

Event

Additional|dllimport, unaligned, w64

Keywords

(*) The Visual Studio extensions enum class and enum struct are not sup-
ported, see https://msdn.microsoft.com/en-us/library/a6cskb49.aspx.
However,the C++11 enum class and enum struct features are sup-

ported.

C11 Support on Windows* Operating System

Although C11 is considered the baseline, the availability of certain C11 fea-
tures depend on the Visual Studio* and compiler version and/or a specific

compiler option.

C11 Language Feature Supported
Anonymous struct and union Yes
Atomic operations Yes
Macros for complex values Yes*
New macros in float.h Yes
static_assert Yes
Typedef redefinition Yes
Unicode strings Yes
uchar.h Partially
_Alignas, _Alignof, max_align_t, stdalign.h|Yes*
_Atomic No
_Generic Yes*
_Noreturn, stdnoreturn.h Yes*
__STDC_VERSION__ ==201112L Yes*
_Static_assert Yes*
_Thread_local Yes*
aligned_alloc Yes

-473 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

C++11 Support on Windows* Operating System

Although C++11 is considered the baseline, the availability of certain C++11
features depend on the Visual Studio* and compiler version and/or a specific
compiler option.

C++11 Language Feature
Additional type traits*

Alias templates

Alignment (alignas, alignof)

Allow typename outside of templates
Attributes

Bidirectional fences*

C99 preprocessor

Conversions of lambdas to function pointers

Data-dependency ordering*

Data-dependency ordering: function annotation

Default template arguments for function templates

Defaulted and deleted functions

Delegating constructors

Explicit conversion operators
Expression SFINAE
Extended friend declarations

Extended sizeof

Extern templates

Forward declared enums

Inheriting constructors

Initialization of class objects by rvalues

Initializer lists*

Inline namespaces

Lambdas

Local and unnamed types as template arguments

Magic statics

Memory model*

Minimal support for garbage collection*®

Non-static data member initializers

R-value references

Range-based for-loop

Raw string literals

-474 -

Intel® Software Guard Extensions Developer Reference for Windows* OS

C++11 Language Feature
Reworded sequence points

Right angle brackets
Standard-layout and trivial types*
Strong compare and exchange*

Strongly typed enums

Thread-local storage (thread_local)*

Type traits*

Unicode strings literals

Universal character names in literals

Unrestricted unions

User-defined literals

Variadic templates

__func__

auto
char16_t/char32_t*
constexptr**

decltype

long long

nullptr

noexcept

override and final

static_assert

(*) You do not need to use the compiler option /Qstd=c++11 to access any of
these features if you develop with the Visual Studio*.

Supported C Secure Functions
The following table lists supported C secure functions inside the enclave.

Table 1 Supported C Secure Functions

Header file |Supported C Secure Functions

mbusafecrt.h|strcat_s(), wescat_s(), strncat_s(), wesncat_s(), strcpy_s(), wescpy_s(), strncpy_s(),
wcesncpy_s(), strtok_s(), westok_s(), wesnlen(), _itoa_s(), _itow_s(), _toa_s()
ltow_s(), _ultoa_s(), ultow_s(), i64toa_s(), i64tow_s(), uibdtoa_s(),
uiedtow_s(), sprintf_s(), swprintf_s(), _snprintf_s(), snwprintf_s(), vsprintf_s(),
_vsnprintf_s(), _vswprintf_s(), _vsnwprintf_s(), memcpy_s(), memmove_s()

- 475 -

	Intel(R) Software Guard Extensions SDK Developer Reference for Windows* OS
	Legal Information
	Revision History
	Introduction
	Intel® Software Guard Extensions Technology Overview
	Intel® Software Guard Extensions Security Properties
	Application Design Considerations
	Terminology and Acronyms

	Setting up an Intel® Software Guard Extensions Project
	Using Microsoft* Visual Studio* Intel® Software Guard Extensions Wizard
	Creating an Enclave

	Using Microsoft* Visual Studio* Intel® Software Guard Extensions Add-in
	Enclave Settings
	Enclave Preferred Load Address
	Enclave Signing
	Import Enclave
	Enclave Project Configuration

	Enclave Project Files
	Microsoft* Visual Studio* Project Settings
	Recommended Project Settings for an Enclave Project
	Recommended Project Settings for an Untrusted Application

	Supported Application Types

	Using Intel® Software Guard Extensions SDK Tools
	Edger8r Tool
	Enclave Signing Tool
	Command-Line Syntax
	Enclave Signing Key Management
	File Formats
	Signing Key Files
	Enclave Signer Usage Examples
	OpenSSL* Examples

	Enclave Debugger
	Starting and Debugging an Enclaved Application from within Microsoft* Visual ...
	Attaching to and Debugging an Enclave inside a Running Process
	Attaching to and Debugging an Enclave inside a Running Universal Windows Appl...

	Enclave Memory Measurement Tool
	CPUSVN Configuration Tool

	Enclave Development Basics
	Writing Enclave Functions
	Calling Functions inside the Enclave
	Checking the Return Value

	Calling Functions outside the Enclave
	Library Development for Enclaves
	Avoiding Name Collisions
	Linking Enclave with Libraries
	Dynamic Libraries
	Static Libraries
	Simulation Libraries

	Linking Application with Untrusted Libraries
	Loading Untrusted Intel® SGX DLLs

	Enclave Definition Language Syntax
	Comments
	Include Headers
	Keywords
	Basic Types
	Pointers
	Pointer Handling
	Pointer Handling in ECALLs
	Pointer Handling in OCALLs
	Attribute: user_check

	Buffer Size Calculation
	Attribute: size
	Attribute: count

	Strings
	const Keyword

	Structures, Enums and Unions
	Structure Deep Copy

	Arrays
	User Defined Data Types
	Preprocessor Capability
	Function Calling Convention for OCALLs
	Propagating errno in OCALLs
	Importing EDL Libraries
	Granting Access to ECALLs
	Using Switchless Calls

	Enclave Configuration File
	Enclave Project Configurations
	Loading and Unloading an Enclave
	Handling Power Events
	Using Switchless Calls
	Usage
	High Level Overview
	Major Highlights:
	Task Pool
	Worker Threads
	Fallback to regular ECALLs/OCALLs
	Nested Switchless ECALL

	Switchless Calls Usage Configuration Tips
	Switchless Calls Operation Mode Callbacks

	Enabling Enclave Code Confidentiality
	Intel® SGX PCL Architectural Overview
	Integrating Intel® SGX PCL with an existing Intel® SGX solution

	Intel® Software Guard Extensions SDK Sample Code
	Sample Enclave
	Configure and Enable Intel® SGX
	Initialize an Enclave
	Saving and Retrieving the Launch Token

	ECALL/OCALL Functions
	Destroy an Enclave

	Power Transition
	ECALL-Error-Code Based Retry
	ECALLs in Demonstration
	Initialization ECALL after Enclave Creation
	Normal ECALL to Process Secrets within the Enclave

	C++11 Demo
	Attestation
	Local Attestation
	Diffie-Hellman Key Exchange Library and Local Attestation Flow
	Diffie-Hellman Key Exchange Library and Local Attestation 2.0

	Protected Channel Establishment
	Secret Message Exchange and Enclave to Enclave Call

	Remote Attestation
	Remote Key Exchange (KE) Libraries
	Remote Attestation and Protected Session Establishment
	Remote Attestation with a Custom Key Derivation Function (KDF)
	Debugging a Remote Attestation Service Provider
	Using a Different Extended Intel® EPID Group for Remote Attestation
	ECDSA Remote Attestation

	Sealed Data
	Replay Protected Policy
	Initializing a Policy
	Verifying a Policy
	Updating a Policy
	Deleting a Policy

	Time Based Policy
	Initializing a Policy
	Verifying a Policy

	Intel® SGX2 Enclave
	Switchless
	Protected Code Loader
	Universal Windows Platform (UWP) Sample Enclave
	SampleSGXEnable

	Library Functions and Type Reference
	Untrusted Library Functions
	Enclave Creation and Destruction
	Enclave Enumeration
	Quoting Functions
	Untrusted Key Exchange Functions
	Untrusted Platform Service Function
	Intel® SGX Enabling and Launch Control Functions
	Intel® SGX device capability Functions

	Trusted Libraries
	Trusted Runtime System
	Intel® Software Guard Extensions Helper Functions
	Custom Exception Handling
	Custom Exception Handler for CPUID Instruction

	Intrinsic Functions

	Trusted Service Library
	Intel® Software Guard Extensions Instruction Wrapper Functions
	Intel® Software Guard Extensions Sealing and Unsealing Functions
	SealLibrary Introduction
	Example Use Cases

	Trusted Platform Service Functions
	Diffie–Hellman (DH) Session Establishment Functions
	Custom Alignment Interfaces

	C Standard Library
	Locale Functions
	Random Number Generation Functions
	String Functions
	Abort Function
	Thread Synchronization Primitives
	Query CPUID inside Enclave
	Secure Functions
	Non-Local Jumps

	C++ Language Support
	C++ Standard Library
	Known Issue for C++ Exception

	Cryptography Library
	Trusted Key Exchange Functions
	Intel® Protected File System Library
	Protected FS Usage Limitation
	Protected FS Error Codes
	Protected FS Application Layout
	Protected FS S3/S4 Important Note
	Using the Protected FS Automatic Keys API
	File Transfer with the Automatic Keys API
	Protected FS Security Non-Objectives

	TCMalloc Library
	Enclave Dynamic Memory Management Library
	Update Project Settings for Enclave Project
	Import Intel® SGX EDMM EDL file
	EDMM Library API

	Switchless Calls Library
	Protected Code Loader Library

	Function Descriptions
	sgx_create_enclave
	sgx_create_enclave_ex
	sgx_destroy_enclave
	sgx_enum_enclaves
	sgx_select_att_key_id
	sgx_init_quote
	sgx_init_quote_ex
	sgx_calc_quote_size
	sgx_get_quote_size
	sgx_get_quote_size_ex
	sgx_get_quote
	sgx_get_quote_ex
	sgx_get_supported_att_key_id_num
	sgx_get_supported_att_key_ids
	sgx_ra_get_msg1
	sgx_ra_get_msg1_ex
	sgx_ra_proc_msg2
	sgx_ra_proc_msg2_ex
	sgx_report_attestation_status
	sgx_check_update_status
	sgx_get_extended_epid_group_id
	sgx_get_ps_cap
	sgx_register_wl_cert_chain
	sgx_enable_device
	sgx_is_capable
	sgx_cap_enable_device
	sgx_cap_get_status
	sgx_cap_get_psw_version_string
	sgx_get_whitelist_size
	sgx_get_whitelist
	sgx_is_within_enclave
	sgx_is_outside_enclave
	sgx_read_rand
	sgx_register_exception_handler
	sgx_unregister_exception_handler
	sgx_spin_lock
	sgx_spin_unlock
	sgx_thread_mutex_init
	sgx_thread_mutex_destroy
	sgx_thread_mutex_lock
	sgx_thread_mutex_trylock
	sgx_thread_mutex_unlock
	sgx_thread_cond_init
	sgx_thread_cond_destroy
	sgx_thread_cond_wait
	sgx_thread_cond_signal
	sgx_thread_cond_broadcast
	sgx_thread_self
	sgx_thread_equal
	sgx_create_event
	sgx_set_event
	sgx_reset_event
	sgx_wait_for_single_object
	sgx_wait_for_multiple_objects
	sgx_destroy_event
	sgx_cpuid
	sgx_cpuidex
	sgx_get_key
	sgx_create_report
	sgx_verify_report
	sgx_self_report
	sgx_self_target
	sgx_get_aligned_ptr
	sgx_aligned_malloc
	sgx_aligned_free
	sgx_calc_sealed_data_size
	sgx_get_add_mac_txt_len
	sgx_get_encrypt_txt_len
	sgx_seal_data
	sgx_seal_data_ex
	sgx_unseal_data
	sgx_mac_aadata
	sgx_mac_aadata_ex
	sgx_unmac_aadata
	sgx_sha256_msg
	sgx_sha256_init
	sgx_sha256_update
	sgx_sha256_get_hash
	sgx_sha256_close
	sgx_sha384_msg
	sgx_sha384_init
	sgx_sha384_update
	sgx_sha384_get_hash
	sgx_sha384_close
	sgx_rijndael128GCM_encrypt
	sgx_rijndael128GCM_decrypt
	sgx_rijndael128_cmac_msg
	sgx_cmac128_init
	sgx_cmac128_update
	sgx_cmac128_final
	sgx_cmac128_close
	sgx_aes_ctr_encrypt
	sgx_aes_ctr_decrypt
	sgx_ecc256_open_context
	sgx_ecc256_close_context
	sgx_ecc256_create_key_pair
	sgx_ecc256_compute_shared_dhkey
	sgx_ecc256_check_point
	sgx_ecdsa_sign
	sgx_ecdsa_verify
	sgx_rsa3072_sign
	sgx_rsa3072_sign_ex
	sgx_rsa3072_verify
	sgx_create_rsa_key_pair
	sgx_create_rsa_priv1_key
	sgx_create_rsa_priv2_key
	sgx_create_rsa_pub1_key
	sgx_free_rsa_key
	sgx_rsa_pub_encrypt_sha256
	sgx_rsa_priv_decrypt_sha256
	sgx_calculate_ecdsa_priv_key
	sgx_create_pse_session
	sgx_close_pse_session
	sgx_get_ps_sec_prop
	sgx_get_ps_sec_prop_ex
	sgx_get_trusted_time
	sgx_create_monotonic_counter_ex
	sgx_create_monotonic_counter
	sgx_destroy_monotonic_counter
	sgx_increment_monotonic_counter
	sgx_read_monotonic_counter
	sgx_ra_init
	sgx_ra_init_ex
	sgx_ra_get_keys
	sgx_ra_close
	sgx_dh_init_session
	sgx_dh_responder_gen_msg1
	sgx_dh_initiator_proc_msg1
	sgx_dh_responder_proc_msg2
	sgx_dh_initiator_proc_msg3
	sgx_fopen
	sgx_fopen_auto_key
	sgx_fclose
	sgx_fread
	sgx_fwrite
	sgx_fflush
	sgx_ftell
	sgx_fseek
	sgx_feof
	sgx_ferror
	sgx_clearerr
	sgx_remove
	sgx_fexport_auto_key
	sgx_fimport_auto_key
	sgx_fclear_cache
	sgx_virtual_protect
	sgx_ecc256_calculate_pub_from_priv
	sgx_ecdsa_verify_hash
	sgx_hmac_sha256_msg
	sgx_hmac256_init
	sgx_hmac256_update
	sgx_hmac256_final
	sgx_hmac256_close
	sgx_aes_gcm128_enc_init
	sgx_aes_gcm128_enc_update
	sgx_aes_gcm128_enc_get_mac
	sgx_aes_gcm_close

	Types and Enumerations
	Type Descriptions
	sgx_enclave_id_t
	sgx_status_t
	sgx_launch_token_t
	sgx_uswitchless_worker_type_t
	sgx_uswitchless_worker_event_t
	sgx_uswitchless_worker_stats_t
	sgx_uswitchless_worker_callback_t
	sgx_uswitchless_config_t
	sgx_exception_vector_t
	sgx_exception_type_t
	sgx_cpu_context_t
	sgx_exception_info_t
	sgx_exception_handler_t
	sgx_spinlock_t
	sgx_thread_t
	sgx_thread_mutex_t
	sgx_thread_mutexattr_t
	sgx_thread_cond_t
	sgx_thread_condattr_t
	sgx_thread_sync_object_handle_t
	sgx_misc_select_t
	sgx_attributes_t
	sgx_misc_attribute_t
	sgx_isv_svn_t
	sgx_cpu_svn_t
	sgx_key_id_t
	sgx_key_128bit_t
	sgx_key_request_t
	sgx_measurement_t
	sgx_mac_t
	sgx_report_data_t
	sgx_prod_id_t
	sgx_target_info_t
	sgx_report_body_t
	sgx_report_t
	sgx_aes_gcm_data_t
	sgx_sealed_data_t
	sgx_epid_group_id_t
	sgx_basename_t
	sgx_quote_t
	sgx_quote_sign_type_t
	sgx_spid_t
	sgx_quote_nonce_t
	sgx_att_key_id_t
	sgx_ql_att_key_id_t
	sgx_att_key_id_ext_t
	sgx_qe_report_info_t
	sgx_time_source_nonce_t
	sgx_time_t
	sgx_ps_cap_t
	sgx_ps_sec_prop_desc_t
	sgx_ps_sec_prop_desc_ex_t
	sgx_mc_uuid_t
	sgx_ra_context_t
	sgx_ra_key_128_t
	sgx_ra_derive_secret_keys_t
	sgx_ra_key_type_t
	sgx_ra_msg1_t
	sgx_ra_msg2_t
	sgx_ra_msg3_t
	sgx_ecall_get_ga_trusted_t
	sgx_ecall_proc_msg2_trusted_t
	sgx_ecall_get_msg3_trusted_t
	sgx_platform_info_t
	sgx_update_info_bit_t
	sgx_dh_msg1_t
	sgx_dh_msg2_t
	sgx_dh_msg3_t
	sgx_dh_msg3_body_t
	sgx_dh_session_enclave_identity_t
	sgx_dh_session_role_t
	sgx_dh_session_t
	sgx_device_status_t
	sgx_config_svn_t
	sgx_config_id_t
	sgx_isvext_prod_id_t
	sgx_isvfamily_id_t
	sgx_kss_config_t
	align_req_t
	custom_alignment_aligned

	Error Codes

	Container Support on Windows
	Windows* Nano Server Installation
	Building a Windows* Nano Server Test Application
	Running the Test Application
	Enabling Flexible Launch Control support on the host
	Windows* Nano Server with Flexible Launch Control support
	Putting it all together

	AESM Support for Containerized Client Applications
	AESM Configuration
	Client Application Configuration

	AESM Inside Windows* Nano Server

	Security Issues Which May Require More Than Using the Latest Intel SGX SDK
	INTEL-SA-00657, INTEL-SA-00767 (Addressing Stale Data Read from Legacy xAPIC)
	SW Hardening

	INTEL-SA-00615 (Mitigations for Processor MMIO Stale Data Vulnerabilities)
	SW Hardening

	Addressing MXCSR Configuration Dependent Timing
	SW Hardening

	INTEL-SA-00334 (Enable CVE-2020-0551 Mitigation)
	Mitigation enabled Trust Libraries
	Create CVE-2020-0551 Mitigation enabled trusted (enclave) project
	Enable Mitigation for existing trusted project
	Mitigation Configuration Introduction
	SW Hardening

	INTEL-SA-00219
	SW Hardening

	INTEL-SA-00088 (includes Spectre v1)
	SW Hardening

	Appendix
	Unsupported MSVC* Options for Enclaves
	Unsupported Intrinsics
	Unsupported C Standard Functions
	Unsupported C++ Standard Classes and Functions
	Unsupported C and C++ Keywords
	C11 Support on Windows* Operating System
	C++11 Support on Windows* Operating System
	Supported C Secure Functions

